• Title/Summary/Keyword: Path Control

Search Result 2,416, Processing Time 0.034 seconds

Development and Evaluation of Automatic Steering System for Parallel Parking (평행주차를 위한 자동 조향 제어시스템 개발 및 성능평가)

  • Lee, Dae Hyun;Kim, Yong Joo;Kim, Tae Hyeong;Chung, Sun Ok;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.18-26
    • /
    • 2016
  • This research is conducted to develop an automatic steering system for parallel parking, and the performance of the system was evaluated by parallel parking a conventional vehicle. The automatic steering system consisted of MDPS (motor driven power steering) to control steering, ESC (electronic stability control) to acquire wheel speed, ultrasonic sensors to recognize the parking space, and a controller to communicate and handle data. The parallel parking process using the automatic steering control consisted of parking space recognition, parking path generation, and parking path tracking. The path for parallel parking was generated based on a kinematic model of a conventional vehicle, and a PI controller was used to control the steering angle for path tracking. Parallel parking using the automatic steering control was conducted according to vehicle speed conditions. The results show that the errors on the x-axis and y-axis were below 0.54 m and 0.14 m, respectively, and the error on the steering angle was less than $1^{\circ}$. Therefore, it is possible to implement parallel parking using an automatic steering control system for conventional vehicles.

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF

Position estimation and path-tracking for wheeled mobile robots with nonholonomic constraints (Nonholonomic 제약을 가지는 구륜 이동 로보트의 위치추정과 경로추적)

  • 정대경;문종우;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.932-935
    • /
    • 1996
  • This paper proposes position estimation and path-tracking of a wheeled-mobile robot(WMR). Odometry and two distance measuring sensors are used to measure distance between guide wall and body and to locate its own position. And extended Kalman filter is introduced to fusion sensors and reduce noise. State feedback controller using the estimated position and path-tracking miles guidance control system. The computer simulation shows that proposed algorithm is well coincide with theoretical approach.

  • PDF

Hybrid Path Planning of Multi-Robots for Path Deviation Prevention (군집로봇의 경로이탈 방지를 위한 하이브리드 경로계획 기법)

  • Wee, Sung-Gil;Kim, Yoon-Gu;Choi, Jung-Won;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.416-422
    • /
    • 2013
  • This paper suggests a hybrid path planning method of multi-robots, where a path deviation prevention for maintaining a specific formation is implemented by using repulsive function, $A^*$ algorithm and UKF (Unscented Kalman Filter). The repulsive function in potential field method is used to avoid collision among robots and obstacles. $A^*$ algorithm helps the robots to find optimal path. In addition, error estimation based on UKF guarantees small path deviation of each robot during navigation. The simulation results show that the swarm robots with designated formation successfully avoid obstacles and return to the assigned formation effectively.

Following Path using Motion Parameters for Virtual Characters

  • Baek, Seong-Min;Jeong, Il-Kwon;Lee, In-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1621-1624
    • /
    • 2003
  • This paper presents a new method that generates a path that has no collision with the obstacles or the characters by using the three motion parameters, and automatically creates natural motions of characters that are confined to the path. Our method consists of three parameters: the joint information parameter, the behavior information parameter, and the environment information parameter. The joint information parameters are extracted from the joint angle data of the character and this information is used when creating a path following motion by finding the relation-function of the parameters on each joint. A user can set the behavior information parameter such as velocity, status, and preference and this information is used for creating different paths, motions, and collision avoidance patterns. A user can create the virtual environment such as road and obstacle, also. The environment is stored as environment information parameters to be used later in generating a path without collision. The path is generated using Hermit-curve and each control point is set at important places.

  • PDF

A Path Planning of a Mobile Robot Using the Ultrasonic Sensor and Fuzzy Logic (초음파 센서와 퍼지로직을 이용한 이동로봇의 경로계획)

  • Park, Chang-Soo;Lee, Jong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.627-629
    • /
    • 1999
  • The research fields of mobile robot consist of three parts. The first is path planning, the second is the application of new sensors, and the last is a combination of the communication technology and mobile robot. In this paper we treat the path-planning. We use a Bayesian probability map, Distance Transform and Fuzzy logic for a path-planning. DT and Fuzzy logic algorithms search for path in entire, continuous free space and unifies global path planning and local path planning. It is efficient and effective method when compared with navigators using traditional approaches.

  • PDF

A collision-free path planning using linear parametric curve based on circular workspace geometry mapping (원형작업공간의 기하투영에 의한 일차 매개 곡선을 이용한 충돌회피 궤적 계획)

  • 남궁인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.896-899
    • /
    • 1996
  • A new algorithm for planning a collision free path is developed based on linear parametric curve. A collision-free path is viewed as a connected space curve in which the path consists of two straight curve connecting start to target point. A single intermediate connection point is considered in this paper and is used to manipulate the shape of path by organizing the control point in polar coordinate (.theta.,.rho.). The algorithm checks interference with obstacles, defined as GM (Geometry Mapping), and maps obstacles in Euclidean Space into images in CPS (Connection Point Space). The GM for all obstacles produces overlapping images of obstacle in CPS. The clear area of CPS that is not occupied by obstacle images represents collision-free paths in Euclidean Space. Any points from the clear area of CPS is a candidate for a collision-free path. A simulation of GM for number of cases are carried out and results are presented including mapped images of GM and performances of algorithm.

  • PDF

High Precision Path Generation of an LCD Glass-Handling Robot

  • Cho, Phil-Joo;Kim, Hyo-Gyu;Kim, Dong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2311-2318
    • /
    • 2005
  • Progress in the LCD industries has been very rapid. Therefore, their manufacturing lines require larger LCD glass-handling robots and more precise path control of the robots. In this paper, we present two practical advanced algorithms for high-precision path generation of an LCD glass-handling robot. One is high-precision path interpolation for continuous motion, which connects several single motions and is a reliable solution for a short robot cycle time. We demonstrate that the proposed algorithm can reduce path error by approximately 91% compared with existing algorithms without increasing cycle time. The second is real-time static deflection compensation, which can optimally compensate the static deflection of the handling robot without any additional sensors, measurement instruments or mechanical axes. This reduces vertical path error to approximately 60% of the existing system error. All of these algorithms have been commercialized and applied to a seventh-generation LCD glass-handling robot.

  • PDF

Smoothly Connected Path Generation and Time-Scheduling Method for Industrial Robot Applications (산업용로봇 작업을 위한 유연한 연결경로 생성과 시간계획)

  • Lee Won-Il;Ryu Seok-Chang;Cheong Joo-No
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.671-678
    • /
    • 2006
  • This article proposes a smooth path generation and time scheduling method for general tasks defined by non-smooth path segments in industrial robotic applications. This method utilizes a simple 3rd order polynomial function for smooth interpolation between non-smooth path segments, so that entire task can effectively maintain constant line speed of operation. A predictor-corrector type numerical mapping technique, which correlates time based speed profile to the smoothed path in Cartesian space, is also provided. Finally simulation results show the feasibility of the proposed algorithm.

Experimental Study on Bi-directional Filtered-x Least Mean Square Algorithm (양방향 Filtered-x 최소 평균 제곱 알고리듬에 대한 실험적인 연구)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.197-205
    • /
    • 2014
  • In applications of adaptive noise control or active noise control, the presence of a transfer function in the secondary path following the adaptive controller and the error path, been shown to generally degrade the performance of the Least Mean Square (LMS) algorithm. Thus, the convergence rate is lowered, the residual power is increased, and the algorithm can become unstable. In general, in order to solve these problems, the filtered-x LMS (FX-LMS) type algorithms can be used. But these algorithms have slow convergence speed and weakness in the environment that the secondary path and error path are varied. Therefore, I present the new algorithm called the "Bi-directional Filtered-x (BFX) LMS" algorithm with nearly equal computation complexity. Through experimental study, the proposed BFX-LMS algorithm has better convergence speed and better performance than the conventional FX-LMS algorithm, especially when the secondary path or error path is varied and the impulsive disturbance is flow in.