Along with the rapid development of industrial technology, the industrial structure has been continuously changed. Accordingly, safety technologies have been gradually developed to be applied into various industrial fields as well, not limited to a specific industry area. As a result, it became important to analyze and predict trends of safety technology development in order to establish technology strategies for industrial safety. In particular, since patents are easily accessible to gather the technology and business information, many studies have highlighted technology forecasting using patent information. Thus, this study proposes the patent analysis of monitoring trends of safety technologies of industry fields, taking into account both static and dynamic aspects through index and text analysis. First, patent documents containing safety-related keywords are collected from the WIPSON database for extracting technology information. Then, the development trends of safety technologies by industry fields are identified and analyzed through the analysis of indicators such as marketability, growth, and activation. The results of various indicator analyses of safety technologies are visualized to compare among industrial safety technologies for businesses and technology developers. Second, textmining algorithm is applied to identify trends of specific technology keywords of major industries extracted from patent index analysis. As a result, it is expected that the safety manager uses the patent analysis of safety technologies to provide safety technology information with safety-related companies and institutes. The extracted safety technologies are applicable to business practice and predict future promising technologies.
Patents are system to promote the development of industry by disclosing technology. The importance of recent patent is being emphasized. For this reason, companies apply for many patents. And they analyze the patent. Patent analysis helps to protect and foster their technology. Previously this method has been carried out by experts. Expert-based patent analysis, however, has the disadvantage of being time-consuming and expensive. Consequently, we try to solve this problems by developing prediction model. Therefore, this paper proposes a data-based patent analysis method using quantitative indicator and textual information. We confirmed the practical applicability of the proposed method through 1,831 autonomous vehicle patents. As a result, it was possible to confirmed that safety and lane detection related technologies are important.
특허권은 강력한 자산이다. 삼성과 애플의 특허 소송이 대표적인 사례이다. 따라서 각국에서 지식재산권이 강화되고 특허가 강조되고 있다. 특허분석의 기본은 특허정보를 활용하는 것이다. 특허정보는 새로운 기술을 제공하고 국제코드인 국제특허분류에 의해 구분되어 있다는 것이다. 논문에서는 국제특허분류코드를 이용하여 제올라이트 기술 분석에 대한 국내외 특허를 분석하였다. 1992년부터 2011년까지의 한국, 미국, 일본, 중국 및 유럽에서 출원된 특허에 대하여 출원국별, 출원인별, 연도별, 세부기술 분야로 분류하여 비교함으로써 기술개발 현황을 분석하였다.
As the 4th Industrial Revolution emerged as a key to improving national competitiveness, OCR technology, one of the major technologies in the 4th industry is in the spotlight. Since characters in various images contain a lot of information, OCR technology for recognizing these characters has evolved into technology used in many industries. In this paper, trends in OCR technology were identified and predicted using thesis data published in 'RISS' and patent data by International patent classification (IPC) under the theme of Optical character recognition (OCR). For patent data 20,000 patents related to OCR technology from 2002 to 2020 were used as data, and 432 papers from 2012 to 2022 were used as data. Through time-series analysis, each patent data and thesis data were investigated since when OCR technology has developed, and various keyword analysis predicted which technology will be used in the future. Finally, the direction of future OCR technology development was presented through network association analysis with patent data and thesis data.
As the safety fields are expanding to a variety of industrial fields, safety technology has been developed by convergence between industrial safety fields such as mechanics, ergonomics, electronics, chemistry, construction, and information science. As the technology convergence is facilitating recently advanced safety technology, it is important to explore the trends of safety technology for understanding which industrial technologies have been integrated thus far. For studying the trends of technology, the patent is considered one of the useful sources that has provided the ample information of new technology. The patent has been also used to identify the patterns of technology convergence through various quantitative methods. In this respect, this study aims to identify the convergence patterns and fields of safety technology using association rule mining(ARM)-based patent co-classification(co-class) analysis. The patent co-class data is especially useful for constructing convergence network between technological fields. Through linkages between technological fields, the core and hub classes of convergence network are explored to provide insight into the fields of safety technology. As the representative method for analyzing patent co-class network, the ARM is used to find the likelihood of co-occurrence of patent classes and the ARM network is presented to visualize the convergence network of safety technology. As a result, we find three major convergence fields of safety technology: working safety, medical safety, and vehicle safety.
Whereas a vast amount of new information on bioinformatics is made available to the public through patents, only a small set of patents are cited in academic papers. A detailed analysis of registered bioinformatics patents, using the existing patent search system, can provide valuable information links between science and technology. However, it is extremely difficult to select keywords to capture bioinformatics patents, reflecting the convergence of several underlying technologies. No single word or even several words are sufficient to identify such patents. The analysis of patent subclasses can provide valuable information. In this paper, I did a preliminary study of the current status of bioinformatics patents and their International Patent Classification (IPC) groups registered in the Korea Intellectual Property Rights Information Service (KIPRIS) database.
BIM(Building Information Modeling) is a salient technology for influential innovation in the construction industry. The patent network analysis is useful for suggesting the direction of technology development and exploring the research and development field. Therefore, the purpose of this study is to analyze the BIM technology structure and core technologies according to the convergence of BIM technology and market expansion. In this study, social network analysis was conducted by establishing a co-classification IPC network for the United States BIM patent. In particular, the characteristics of the major technical areas in the BIM technology network were identified through centrality analysis. G06F017/00, digital computing or data processing method, is a core technology field in the BIM network. Arrangements, apparatus or systems for transmission of digital information, H04L029/00 is an influential technology across the network. B25J009/00 for program controlled manipulators is an intermediary technology field and G06T019/00, manipulating 3D models or images for computer graphics, is an important field for technological development competitiveness.
특허문서는 연구 개발된 기술에 대한 상세한 결과를 포함하고 있기 때문에 효과적인 기술분석을 위한 다양한 특허분석 방법에 대한 연구가 진행되고 있다. 특히 통계학과 머신러닝 알고리즘에 의한 정량적인 특허분석에 대한 연구가 최근 활발하게 이루어지고 있다. 정량적 특허분석에서 가장 많이 사용되는 특허 데이터는 기술 키워드이다. 기술 키워드 데이터를 분석하는 기존의 방법은 대부분 음의 무한대부터 양의 무한대까지 실수 공간 전체를 확률변수의 값으로 갖는 가우시안 확률분포에 기반한 모형이었다. 본 논문에서는 이론적으로 0부터 양의 무한대까지의 값을 갖는 특허 키워드의 빈도 데이터를 분석하기 위하여 감마 확률분포를 활용한 모형을 제안한다. 또한 감마 회귀모형의 회귀방정식을 결정하기 위하여 키워드 간의 기술 연관성을 시각화하는 2-모드 네트워크를 구축한다. 제안 방법과 기존의 가우시안 기반의 분석모형 간의 성능평가를 위하여 실제 특허 데이터를 수집하여 분석한다.
우리는 4차 산업혁명이라는 편리한 시대에 살고 있으며, 새로운 기술의 발전으로 인해 풍요로운 생활을 하고 있다. 4차 산업혁명은 로봇기술, 생명과학, 인공지능이 주도하는 차세대 산업혁명으로, 스포츠도 융복합 연구의 필요성이 제기되면서 스포츠의 학문적 기초를 위한 노력들이 계속되고 있다. 최근에는 코로나19로 인한 홈트레이닝이 주목받고 있는데, 그 중 필라테스는 인기가 높으며 그와 동시에 관련 용품들의 수요도 급증했다. 이는 코로나19가 스포츠산업 생태계에 영향력을 주었음을 단적으로 보여주고 있다. 따라서 본 연구에서는 필라테스의 정확한 특허 정보를 통해 현재의 동향을 파악하고 향후 스포츠 융복합 산업과 스포츠 지식재산 관련 연구의 기초자료로 사용하는데 그 목적이 있다. 연구 방법은 특허청 특허정보 검색서비스인 키프리스(KIPRIS, www.kipris.or.kr)에서 제공하는 자료를 활용하여 2010년 1월 1일부터 2021년 12월 31일까지의 자료를 통해 특허 상태분석, 국제특허분류(IPC) 특허분석, 분류별 세부 특허분석을 실시하였다.
빅데이터의 활용은 비즈니스 가치를 높이는데 필수요소가 됨에 따라 빅데이터 시장의 규모가 점점 더 커지고 있다. 이에 따라 빅데이터 시장을 선점하기 위해서는 경쟁력 있는 특허를 선점하는 것이 중요하다. 본 연구에서는 빅데이터 특허의 동향을 분석하기 위하여 영문 키워드 네트워크 기반 특허분석을 수행하였다. 분석 절차는 빅데이터 수집 및 전처리, 네트워크 구성, 네트워크 분석으로 구성되어 있다. 연구 결과는 다음과 같다. 빅데이터 특허 대다수는 예측 등을 위한 데이터 처리를 위한 특허이며, analysis, process, information, data, prediction, server, service, construction 키워드가 연결정도 중심성 및 매개 중심성이 높았다. 본 연구의 분석결과는 향후 빅데이터 특허 출원 시 참고할 수 있는 유용한 정보로 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.