• Title/Summary/Keyword: Patch Matching Criterion

Search Result 2, Processing Time 0.016 seconds

Example-based Super Resolution Text Image Reconstruction Using Image Observation Model (영상 관찰 모델을 이용한 예제기반 초해상도 텍스트 영상 복원)

  • Park, Gyu-Ro;Kim, In-Jung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.295-302
    • /
    • 2010
  • Example-based super resolution(EBSR) is a method to reconstruct high-resolution images by learning patch-wise correspondence between high-resolution and low-resolution images. It can reconstruct a high-resolution from just a single low-resolution image. However, when it is applied to a text image whose font type and size are different from those of training images, it often produces lots of noise. The primary reason is that, in the patch matching step of the reconstruction process, input patches can be inappropriately matched to the high-resolution patches in the patch dictionary. In this paper, we propose a new patch matching method to overcome this problem. Using an image observation model, it preserves the correlation between the input and the output images. Therefore, it effectively suppresses spurious noise caused by inappropriately matched patches. This does not only improve the quality of the output image but also allows the system to use a huge dictionary containing a variety of font types and sizes, which significantly improves the adaptability to variation in font type and size. In experiments, the proposed method outperformed conventional methods in reconstruction of multi-font and multi-size images. Moreover, it improved recognition performance from 88.58% to 93.54%, which confirms the practical effect of the proposed method on recognition performance.

Segmentation and Classification of Range Data Using Phase Information of Gabor Fiter (Gabor 필터의 위상 정보를 이용한 거리 영상의 분할 및 분류)

  • 현기호;이광호;황병곤;조석제;하영호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1275-1283
    • /
    • 1990
  • Perception of surfaces from range images plays a key role in 3-D object recognition. Recognition of 3-D objects from range images is performed by matching the perceived surface descriptions with stored object models. The first step of the 3-d object recognition from range images is image segmentation. In this paper, an approach for segmenting 3-D range images into symbolic surface descriptions using spatial Gabor filter is proposed. Since the phase of data has a lot of important information, the phase information with magnitude information can effectively segment the range imagery into regions satisfying a common homogeneity criterion. The phase and magnitude of Gabor filter can represent a unique featur vector at a point of range data. As a result, range images are trnasformed into feature vectors in 3-parameter representation. The methods not only to extract meaningful features but also to classify a patch information from range images is presented.

  • PDF