The effect of porosity on bending and free vibration behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper. The modified rule of mixture covering porosity phases is used to describe and approximate material properties of the FGM plates with porosity phases. The effect due to transverse shear is included by using a new refined shear deformation theory. The number of unknown functions involved in the present theory is only four as against five or more in case of other shear deformation theories. The Poisson ratio is held constant. Based on the sinusoidal shear deformation theory, the position of neutral surface is determined and the equation of motion for FG rectangular plates resting on elastic foundation based on neutral surface is obtained through the minimum total potential energy and Hamilton's principle. The convergence of the method is demonstrated and to validate the results, comparisons are made with the available solutions for both isotropic and functionally graded material (FGM). The effect of porosity volume fraction on Al/Al2O3 and Ti-6Al-4V/Aluminum oxide plates are presented in graphical forms. The roles played by the constituent volume fraction index, the foundation stiffness parameters and the geometry of the plate is also studied.
This work aims to explore the static behaviour of a tapered functionally graded porous plate (FGPP) with even and uneven porosity distributions resting on two parametric elastic foundations. The plate under investigation is subjected to bi-sinusoidal loading and the edges of the plate are exposed to different combinations of edge restrictions. In order to examin the static behaviour, bending factors (BF) related to bending and normal stresses have been evaluated using classical plate theory. To achieve this, the governing equations have been derived employing the energy concept. And to solve it, the Rayleigh-Ritz method with an algebraic function has been utilised; it is simple, precise, and computationally intensive. After convergence and validation analyses, new findings are made available. The BF of the plate have been exhaustively examined to explain the influence of aspect ratios, material property index, porosity factor, taper factor, and Winkler and Pasternak stiffness. It is observed that the BF of an elastically supported FGPP are influenced by the index of material propery and the aspect ratio. Findings also indicate that the impact of porosity is more when it is spread evenly, as opposed to when it is unevenly distributed. Further, the deformed plate's structure is significantly influenced by the different thickness variations. Examination of bending characteristics of FGPP having different new cases of thickness variations with different types of porosity distribution under fifteen different mixed edge constraints is the prime novality of this work. Results presented are reliable enough to be taken into account for future studies.
In this article, a free vibration analysis of functionally graded (FG) plates resting on elastic foundations is presented using a quasi-3D hybrid-type higher order shear deformation theory. Undetermined integral terms are employed in the proposed displacement field and modeled based on a hybrid-type (sinusoidal and parabolic) quasi-3D HSDT with five unknowns in which the stretching effect is taken into account. Thus, it can be said that the significant feature of this theory is that it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The elastic foundation parameters are introduced in the present formulation by following the Pasternak (two-parameter) mathematical model. Equations of motion are obtained via the Hamilton's principles and solved using Navier's method. Accuracy of the proposed theory is confirmed by comparing the results of numerical examples with the ones available in literature.
In this study, dynamics responses of advanced composite plates resting variable elastic foundations via a quasi-3D theory are developed using an analytical approach. This higher shear deformation theory (HSDT) is included the shear deformation theory and effect stretching that has five unknowns, which is even inferior to normal deformation theories found literature and other theories. The quasi-three-dimensional (quasi-3D) theory accounts for a parabolic distribution of the transverse shear deformation and satisfies the zero traction boundary conditions on the surfaces of the advanced composite plate without needing shear correction factors. The plates assumed to be rest on two-parameter elastic foundations, the Winkler parameter is supposed to be constant but the Pasternak parameter varies along the long side of the plate with three distributions (linear, parabolic and sinusoidal). The material properties of the advanced composite plates gradually vary through the thickness according to two distribution models (power law and Mori-Tanaka). Governing differential equations and associated boundary conditions for dynamics responses of the advanced composite plates are derived using the Hamilton principle and are solved by using an analytical solution of Navier's technique. The present results and validations of our modal with literature are presented that permitted to demonstrate the accuracy of the present quasi-3D theory to predict the effect of variables elastic foundation on dynamics responses of advanced composite plates.
This present paper concerned with the analytic modelling for vibration of the functionally graded (FG) plates resting on non-variable and variable two parameter elastic foundation, based on two-dimensional elasticity using higher shear deformation theory. Our present theory has four unknown, which mean that have less than other higher order and lower theory, and we denote do not require the factor of correction like the first shear deformation theory. The indeterminate integral are introduced in the fields of displacement, it is allowed to reduce the number from five unknown to only four variables. The elastic foundations are assumed a classical model of Winkler-Pasternak with uniform distribution stiffness of the Winkler coefficient (kw), or it is with variables distribution coefficient (kw). The variable's stiffness of elastic foundation is supposed linear, parabolic and trigonometry along the length of functionally plate. The properties of the FG plates vary according to the thickness, following a simple distribution of the power law in terms of volume fractions of the constituents of the material. The equations of motions for natural frequency of the functionally graded plates resting on variables elastic foundation are derived using Hamilton principal. The government equations are resolved, with respect boundary condition for simply supported FG plate, employing Navier series solution. The extensive validation with other works found in the literature and our results are present in this work to demonstrate the efficient and accuracy of this analytic model to predict free vibration of FG plates, with and without the effect of variables elastic foundations.
This paper presents the influence of carbon nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite sandwich annular sector plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) sandwich plate has smooth variation of CNT fraction along the thickness direction. The distributions of CNTs are considered functionally graded (FG) or uniform along the thickness and their mechanical properties are estimated by an extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. Effects of CNT distribution, volume fraction, aspect ratio and waviness, and also effects of Pasternak's elastic foundation coefficients, sandwich plate thickness, face sheets thickness and plate aspect ratio are investigated on the free vibration of the sandwich plates with wavy CNT-reinforced face sheets. The study is carried out based on three-dimensional theory of elasticity and in contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this approach does not neglect transverse normal deformations. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free.
Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
Steel and Composite Structures
/
v.34
no.1
/
pp.75-89
/
2020
The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.
This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.
Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
Steel and Composite Structures
/
v.43
no.1
/
pp.91-106
/
2022
This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.
In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.