• Title/Summary/Keyword: Paste Flow

Search Result 154, Processing Time 0.021 seconds

Flowability and Strength of Self-compacting Concrete Mixed with Tailings from the Sangdong Tungsten Mine (상동관상 광미를 혼합한 자기충전콘크리트의 유동 및 강도 특성)

  • Choi, Yun Wang;Kim, Yong Jic;Jung, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.767-774
    • /
    • 2006
  • This study has focused on the possibility for recycling of tailings from the sangdong tungsten mine as powder (TA) of self-compacting concrete (SCC). The experimental tests for entrapped water ratio were carried out in accordance with the specified method by Okamura. The rheological measurements of cement paste were conducted by using a commercially digital Brookfield viscometer (Model LVDV-II+) equipped with cylindrical spindles, also tests for slump-flow, time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were carried out in accordance with the specified by the Japanese Society of Civil Engineering (JSCE). The results of this study, entrapped water ratio was decreased with increasing replacement of TA. Thickness of pseudo water film was increased, and mean plastic viscosity was decreased with increasing replacement of TA. And slump-flow of SCC was decreased with increasing replacement of TA. But time required to reach 500 mm of slump flow (sec), time required to flow through V-funnel (sec) and filling height of U-box test (mm) were satisfied a prescribed range. The mechanical properties including compressive strength, splitting tensile strength and elastic modulus were checked with the requirements specified by Korean Industrial Standard (KS). The compressive strength of SCC was decreased with increasing replacement of TA, splitting tensile strength and elastic modulus were similar to those of normal concrete.

Rheological Properties of Waxy Rice Starch-Gum Mixtures in Steady and Dynamic Shear

  • Kim, Do-Dan;Lee, Young-Seung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.233-239
    • /
    • 2009
  • The effects of guar gum (GG) and xanthan gum (XG) at different concentrations (0, 0.2, 0.4, and 0.6% w/w) on the rheological properties of Korean waxy rice starch (WRS) pastes were evaluated under both steady and dynamic shear conditions. The flow properties of WRS-gum mixtures were determined from the rheological parameters of the power law model. The addition of GG and XG to WRS resulted in an increase in the apparent viscosity ($\eta_{a,100}$) and consistency index (K) values obtained from power law model. The flow behavior index (n) values of the WRS-XG mixtures decreased with an increase in gum concentration while there was only a marginal difference between n values for the WRS-GG mixtures. Dynamic moduli (G', G", and $\eta^*$) values in the WRS-gum mixture systems also increased with an increase in gum concentration. WRS-XG mixtures had higher dynamic moduli and lower tan $\delta$ (ratio of G"/G') values than WRS-GG mixtures, indicating that the higher dynamic rheological properties of WRS-XG can be attributed to an increase in the viscoelasticity of the continuous phase in the starch-gum mixture systems, which was due to the higher viscoleastic properties of XG compared to GG. The dynamic ($\eta^*$) and steady shear ($\eta_a$) viscosities of the WRS-XG paste at a 0.2% gum concentration followed the Cox-Merz superposition rule.

The Development of the HACCP Plan in Korean Rice Cake Manufacturing Facilities (시판 떡류 생산에서 HACCP Plan 개발을 위한 연구)

  • Lee, Hyo-Soon;Jang, Myung-Sook
    • Korean journal of food and cookery science
    • /
    • v.24 no.5
    • /
    • pp.652-664
    • /
    • 2008
  • In this study, a Hazard Analysis Critical Control Point (HACCP) plan was developed for the sanitary mass production of commercial Korean rice cake products (Gaepidduk, Injulmi, and Julpyon). The microbiological properties of manufacturing flow were evaluated in order to develop the HACCP Plan. The moisture contents of the rice cakes ranged between 36.2${\sim}$55.3%, whereas the water activity of all samples ranged between 0.954${\sim}$1.0. Microorganisms testing was conducted during various phases of the product flow of Korean rice cake preparation, and included assessments of food equipment, work environment, and cooking employees on a small scale. During the manufacture of Injulmi, Julpyon and Gaepidduk, CCPs were purchasing & storage, steaming and cooling, molding, and holding in the A and B manufactories. At the critical limit of CCPs, storage was conducted below at $5^{\circ}C$ in soybean powder, oil, and paste with redbeans. The steaming process was conducted above at $99^{\circ}C$ for 40 min. Cooling and holding processes were conducted for 2 hours below at $15^{\circ}C$. The molding process included sanitary education for foodhandlers and training for operators. Thus, certain prerequisite programs had to be implemented prior to the implementation of the HACCP system. High levels of bacterial contamination were detected in the aprons worn to work by some employees. Additionally, periodic sanitary education for foodhandlers and training for operators or managers was required. Cross contamination by materials was expected at the place where materials were processed or stored.

Evaluation of 3D concrete printing performance from a rheological perspective

  • Lee, Keon-Woo;Lee, Ho-Jae;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The objective of this study was to derive a cementitious material for three-dimensional (3D) concrete printing that fulfills key performance functions, extrudability, buildability and bondability for 3D concrete printing. For this purpose, the rheological properties shown by different compositions of cement paste, the most fundamental component of concrete, were assessed, and the correlation between the rheological properties and key performance functions was analyzed. The results of the experiments indicated that the overall properties of a binder have a greater influence on the yield stress than the plastic viscosity. When the performance of a cementitious material for 3D printing was considered in relation with the properties of a binder, a mixture with FA or SF was thought to be more appropriate; however, a mixture containing GGBS was found to be inappropriate as it failed to meet the required function especially, buildability and extrudability. For a simple quantitative evaluation, the correlation between the rheological parameters of cementitious materials and simplified flow performance test results-time taken to reach T-150 and the number of hits required to reach T-150-in consideration of the flow of cementitious materials was compared. The result of the analysis showed a high reliability for the correlation between the rheological parameters and the time taken to reach T-150, but a low reliability for the number of hits needed for the fluid to reach T-150. In conclusion, among several performance functions, extrudability and buildability were mainly assessed based on the results obtained from various formulations from a rheological perspective, and the suitable formulations of composite materials for 3D printing was derived.

Effect of fineness of high lime fly ash on pozzolanic reactivity and ASR mitigation

  • Afshinnia, Kaveh;Rangaraju, Prasada R.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.197-204
    • /
    • 2017
  • Typically, high lime fly ash (Class C) has been characterized as a fly ash, which at lower replacement levels is not as effective as the low lime (Class F) fly ash, in mitigating alkali-silica reaction (ASR) in portland cement concrete. The influence of fineness of Class C, obtained by grinding virgin fly ash into finer particles, on its pozzolanic reactivity and ASR mitigation performance was investigated in this study. In order to assess the pozzolanic reactivity of mortar mixtures containing virgin or ground fly ashes, the strength activity index (SAI) test and thermo-gravimetric analysis (TGA) were conducted on the mortar cubes and paste samples, respectively, containing virgin fly ash or two ground fly ashes. In addition, to evaluate any improvement in the ASR mitigation of ground fly ashes compared to that of the virgin fly ash, the accelerated mortar bar test (AMBT) was conducted on the mortar mixtures containing different dosages of either virgin or ground fly ashes. In all tests crushed glass aggregate was used as a highly reactive aggregate. Results from this study showed that the finest fly ash (i.e., with an average particle size of 3.1 microns) could increase the flow ability along with the pozzolanic reactivity of the mortar mixture. However, results from this study suggested that the fineness of high lime fly ash does not seem to have any significant effect on ASR mitigation.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

Lead free, Low temperature sealing materials for soda lime glass substrates in Plasma Display Panel (PDP)

  • Lee, Heon-Seok;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Yoon-Hee;Lee, Suk-Hwa;Kim, Il-Won;Lee, Jong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.373-376
    • /
    • 2008
  • New glass compositions for lead free, low temperature sealing glass frit was examined in $ZnO-V_2O_5-P_2O_5$ glass system which can be used sealing material for PDP to be made of soda lime glass substrates. Among many glass compositions, KFS-C glass showed low glass transition point (Tg) and good fluidity and adhesion characteristics when it was tested by flow button method at low temperature of $420^{\circ}C$. Its Tg was $317^{\circ}C$ and thermal expansion coefficient (CTE) was $70{\times}10^{-7}/K$. The glass frit was mixed with an organic vehicle to make a paste and it was dispensed and sealed with soda lime glass substrates at $420^{\circ}C$ for 10min. Sealed glass panels also showed good adhesion strength even sealed at low temperature of $420^{\circ}C$.

  • PDF

Effects of Chemical Admixture on the Paste Fluidity and Mortar Strength Development of High Chloride Cement (염소 고함유시멘트의 페이스트 유동성과 모르타르 강도발현성에 미치는 화학 혼화제의 영향)

  • Jeong, Chan-Il;Park, Soo-Kyung;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.23-31
    • /
    • 2007
  • To examine the effects of chemical admixture on the fluidity and strength development of high chloride cement, experiments were conducted in which lignosulfonate (LS), naphthalenesulfonate (NS), and polycorboxylate (PC) were each added in standard and excessive amounts, and the results were as follows. 1. Because adding KCl to NS causes a decrease in flow, adding PC is better in maintaining high cement fluidity. 2. When cement contained much chloride comes in contact with water, hydration begins 4 h after contact and securing workability becomes difficult, but by adding PC, workability can be secured to 10 h. 3. The bound water ratio and compressive strength in aging 3 days occupy $70\sim80%$ of those in aging 28 days, and the early compressive strength increases not only by adding KCl, but also by chemical admixture. 4. Although compressive strength development is excellent in NS, PC, if NS is added excessively, hydration becomes slow and while the pore structures become slightly minute, the strength development decreases due to severe setting retardation.

Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete

  • Mazloom, Moosa;Mahboubi, Farzan
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.203-210
    • /
    • 2017
  • The purpose of this paper is to evaluate the settlement of lightweight coarse aggregate of self-compacting lightweight concrete (SCLC) after placement of concrete on its final position. To investigate this issue, sixteen samples of concrete mixes were made. The water to cementitious materials ratios of the mixes were 0.35 and 0.4. In addition to the workability tests of self-compacting concrete (SCC) such as slump flow, V-funnel and L-box tests, a laboratory experiment was made to examine the segregation of lightweight coarse aggregate in concrete. Because of the difficulties of this test, the image processing technique of MATLAB software was used to check the segregation above too. Moreover, the fuzzy logic technique of MATLAB software was utilized to improve the clarity of the borders between the coarse aggregate and the paste of the mixtures. At the end, the results of segregation tests and software analyses are given and the accuracy of the software analyses is evaluated. It is worth noting that the minimum and maximum differences between the results of laboratory tests and software analyses were 1.2% and 9.19% respectively. It means, the results of image processing technique looks exact enough for estimating the segregation of lightweight coarse aggregate in SCLC.

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.