• Title/Summary/Keyword: Passive structure

Search Result 773, Processing Time 0.026 seconds

A Study on Basic Characteristics of a Coplanar-type Transmission Line Employing Periodic Structure on Si RFIC (Si RFIC상에서 주기적 구조를 이용한 코프레너형 전송선로의 기본특성연구)

  • Joh, Han-Nah;Park, Young-Bae;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.964-973
    • /
    • 2008
  • In this study, a short-wavelength coplanar-type transmission line employing periodic ground structure (PGS) was developed for application to miniaturized on-chip passive component on Si Radio Frequency Integrated Circuit (RFIC). The transmission line employing PGS showed shorter wavelength and lower characteristic impedance than conventional coplanar-type transmission line. The wavelength of the transmission line employing PGS structure was 57 % of the conventional coplanar-type transmission line on Si substrate. Using the theoretical analysis. basic characteristics of the transmission line employing PGS (e.g., bandwidth. loss, impedance, and resonance characteristics) were also investigated in order to evaluate its suitability for application to a development of miniaturized passive on-chip components on silicon RFIC. According to the results. the bandwidth of the transmission line employing PGS was more than 895 GHz as long as T is less than 20${\mu}m$, and the resonance characteristic was observed in 1239 GHz, which indicates that the PPGM structure is a promising candidate for application to a development of miniaturized on-chip passive components on Si RFIC.

A Characteristic Heating-Energy Expend of Insulation Block System for Korea Type Passive House (한국형 패시브하우스를 위한 단열블럭시스템의 난방에너지소비 특성)

  • Kang, Jae-Sik;Choi, Gyoung-Seok;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.603-607
    • /
    • 2009
  • About a Structure is performance external insulation is fundamantal performance for enrgy-saving. these day, most of residential structures have constructed by internal insulation method structure. The method structure internal insulation have construction and economical efficiency, but on the other hand, be generated heat loss by heat bridge especially, be generated loss heat-energy logical consequence in structure ondol. The external insulation structure method has a mert able to minimum to loss heat about heat-bridge. But the external insulation technique is unsatisfactory statues within the know-how and method of construction and materials compared with developed countries. The recently, the requirement of market related to the external insulation technique is resulted by the energy efficiency system, but it can lead to the lack of alternative technique In study on the korea type passive house building design for insulation block method of wall system has to experimental characteristic heat-energy of practice building. In result field-experimental, the heat-bridge appeared to characteristic spent heat-energy of blow 2L class and have a suffience performance it.

  • PDF

Vibration control of an SDOF structure using semi-active tuned mass damner (준능동 TMD를 이용한 단자유도 구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 박철휴;안상준;박현철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.651-657
    • /
    • 2003
  • A new mechanical-electrical hybrid passive damping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the nitration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model Is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

Vibration Control of Beams Using Mechanical-Electrical Hybrid Passive Damping System (전기적-기계적 수동감쇠기를 이용한 빔의 진동제어)

  • 안상준;박현철;박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.362-367
    • /
    • 2003
  • A new mechanical-electrical hybrid passive dam ping treatment is proposed to improve the performance of structural vibration control. The proposed hybrid passive damping system consists of a constrained layer damping treatment and a shunt circuit. In a passive mechanical constrained layer damping, a viscoelastic material damping layer is used to control the structural vibration modes in high frequency range. The passive electrical damping is designed for targeting the vibration amplitude in the low frequency range. The governing equations of motion are derived through the Hamilton's principle. The obtained mathematical model is validated experimentally. The presented theoretical and experimental techniques provide invaluable tools for controlling the multiple modes of a vibrating structure over a wide frequency band.

  • PDF

Numerical investigation of an MR damper-based smart passive control system for mitigating vibration of stay cables

  • Kim, In-Ho;Jung, Hyung-Jo;Kim, Jeong-Tae
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.443-458
    • /
    • 2011
  • An extensive numerical investigation on the magnetorheological (MR) damper-based smart passive control system for mitigating vibration of stay cables under wind loads has been conducted. The smart passive system is incorporated with an electromagnetic induction (EMI) device for reducing complexity of the conventional MR damper based semi-active control system by eliminating an external power supply part and a feedback control part (i.e., sensors and controller). In this study, the control performance of the smart passive system has been evaluated by using a cable structure model extracted from a full-scale long stay cable with high tension. Numerical simulation results of the proposed smart damping system are compared with those of the passive and semi-active control systems employing MR dampers. It is demonstrated from the results that the control performance of the smart passive control system is better than those of the passive control cases and comparable to those of the semi-active control systems in the forced vibration analysis as well as the free vibration analysis, even though there is no external power source in the smart passive system.

A study on the fabrication of Miniatured VCO using LTCC(Low Temperature Cofired Ceramic) (저온 소성 유전체 재료를 이용한 초소형 VCO (Voltage Controlled Oscillator) 제작에 관한 연구)

  • 유찬세;이영신;이우성;강남기;박종철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.135-138
    • /
    • 2002
  • VCO(Voltage Controlled Oscillator) is one of the main components governing the size, performance and power consumption of telecommunication devices. As the devices become much smaller, VCO need to have much smaller size with better characteristics. Buried type passive components of L,C,R were developed previously and the structure of these components are good for minimizing the size of VCO. Our own library of passive components is used in simulation and fabrication of VCO circuit, and surface mounted components like varactor diode are analysed using the measurement circuit designed by ourselves. Two-Dimensional simulation of VCO circuit and local three-Dimensional structure simulation are performed and their relation is obtained. In structure of multi-layered VCO, some components governing the characteristics of VCO are selected and placed on the top of oscillator for the good tuning process. In resonator part, the stripline structure and low loss glass/ceramic material are used to get higher Q value. In our research, a VCO oscillates in the 2.3∼2.36 GHz band is developed.

  • PDF

Parameter Study for Optimal Design of Smart TMD (스마트 TMD의 최적설계를 위한 파라메터 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer (하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.

Mitigation of progressive collapse in steel structures using a new passive connection

  • Mirtaheri, Masoud;Emami, Fereshteh;Zoghi, Mohammad A.;Salkhordeh, Mojtaba
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.381-394
    • /
    • 2019
  • If an alternative path would not be considered for redistribution of loads, local failure in structures will be followed by a progressive collapse. When a vertical load-bearing element of a steel structure fails, the beams connected to it will lose their support. Accordingly, an increase in span's length adds to the internal forces in beams. The mentioned increasing load in beams leads to amplifying the moments there, and likewise in their corresponding connections. Since it is not possible to reinforce all the elements of the structure against this phenomenon, it seems rational to use other technics like specified strengthened connections. In this study, a novel connection is suggested to handle the stated phenomenon which is introduced as a passive connection. This connection enables the structure to tolerate the added loads after failing of the vertical element. To that end, two experimental models were constructed and thereafter tested in half-scale, one-story, double-bay, and bolted connections in three-dimensional spaces. This experimental study has been conducted to compare the ductility and strength of a frame that has ordinary rigid connections with a frame containing a novel passive connection. At last, parametric studies have been implemented to optimize the dimensions of the passive connection. Results show that the load-bearing capacity of the frame increased up to 75 percent. Also, a significant decrease in the displacement of the node wherein the column is removed was observed compared to the ordinary moment resisting frame with the same loads.