• 제목/요약/키워드: Passive structure

검색결과 773건 처리시간 0.034초

압력에 따른 평행박막 밸브의 자율 변형을 이용한 수동형 유량 제어기 (A Passive Flow-rate Regulator Using Pressure-dependent Autonomous Deflection of Parallel Membrane Valves)

  • 도일;조영호
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.573-576
    • /
    • 2009
  • We present a passive flow-rate regulator, capable to compensate inlet pressure variation and to maintain a constant flow-rate for precise liquid control. Deflection of the parallel membrane valves in the passive flowrate regulator adjusts fluidic resistance according to inlet fluid pressure without any external energy. Compared to previous passive flow-rate regulators, the present device achieves precision flow regulation functions at the lower threshold compensation pressure of 20kPa with the simpler structure. In the experimental study, the fabricated device achieves the constant flow-rate of $6.09{\pm}0.32{\mu}l/s$ over the inlet pressure range of $20{\sim}50$ kPa. The present flow-rate regulator having simple structure and lower compensation pressure level demonstrates potentials for use in integrated micropump systems.

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

A study on Electronic Properties of Passive Film Formed on Ti

  • Kim, DongYung;Kwon, HyukSang
    • Corrosion Science and Technology
    • /
    • 제2권5호
    • /
    • pp.212-218
    • /
    • 2003
  • Electronic properties of passive films formed on Ti at film formation potentials $(E_f)V_{SCE}$ in pH 8.5 buffer solution and in an artificial seawater were examined through the photocurrent measurement and Mott-Schottky analysis. The passive films formed on Ti in pH 8.5 buffer solution exhibited a n-type semiconductor with a band gap energys $(E_g);E_g^{n=2}=3.4$ eV for nondirect electron transition, and $E_g^{n=0.5}=3.7$ eV for direct electron transition. These band gap values were almost same as those for the passive films formed in artificial seawater, indicating that chloride ion ($Cl^-$ in solution did not affect the electronic structure of the passive film on Ti. $E_g$ for passive films formed on Ti were found to be greater than those ($E_g^{n=0.5}=3.1$ eV, $E_g^{n=2}=3.4$) for a thermal oxide film formed on Ti in air at $400^{\circ}C$. The disorder energy of passive film, determined from the absorption tail of photocurrent spectrum, was much greater than that for the thermal oxide film farmed on Ti in air at $400^{\circ}C$. The greater $E_g$ and the higher disorder energy for the passive film compared with those for the thermal oxide fIlm suggest that the passive film on Ti exhibited more disorded structure than the thermal oxide film. The donor density (about $2.4{\times}10^{20}cm^{-3}$) for the passive film formed in artificial seawater was greater than that (about $20{\times}10^{20}cm^{-3}$) formed in pH 8.5 buffer solution, indicating that $Cl^-$ increased the donor density for the passive film on Ti.

직교배열실험 방법 기반 해양플랜트 플로트오버 설치 공법용 수동형 DSF의 구조설계 민감도와 메타모델링 평가 (Evaluation on Structure Design Sensitivity and Meta-modeling of Passive Type DSF for Offshore Plant Float-over Installation Based on Orthogonal Array Experimental Method)

  • 이동준;송창용
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.85-95
    • /
    • 2021
  • Structure design sensitivity was evaluated using the orthogonal array experimental method for passive-type deck support frame (DSF) developed for float-over installation of the offshore plant. Moreover, approximation characteristics were also reviewed based on various meta-models. The minimum weight design of the DSF is significantly important for securing both maneuvering performance and buoyancy of a ship equipped with the DSF and guaranteeing structural design safety. The performance strength of the passive type DSF was evaluated through structure analysis based on the finite element method. The thickness of main structure members was applied to design factors, and output responses were considered structure weight and strength performances. Quantitative effects on the output responses for each design factor were evaluated using the orthogonal array experimental method and analysis of variance. The optimum design case was also identified from the orthogonal array experiment results. Various meta-models, such as Chebyshev orthogonal polynomial, Kriging, response surface method, and radial basis function-based neural network, were generated from the orthogonal array experiment results. The results of the orthogonal array experiment were validated using the meta-modeling results. It was found that the radial basis function-based neural network among the meta-models could approximate the design space of the passive type DSF with the highest accuracy.

Passive earth pressure for retaining structure considering unsaturation and change of effective unit weight of backfill

  • Zheng, Li;Li, Lin;Li, Jingpei;Sun, De'an
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.207-215
    • /
    • 2020
  • This paper presents a kinematic limit analysis for passive earth pressure of rigid retaining structures considering the unsaturation of the backfill. Particular emphasis in the current work is focused on the effects of the spatial change in the degree of saturation on the passive earth pressure under different steady-infiltration/evaporation conditions. The incorporation of change of effective unit weight with degree of saturation is the main contribution of this study. The problem is formulated based on the log-spiral failure model rather than the linear wedge failure model, in which both the spatial variations of suction and soil effective unit weight are taken into account. Parametric studies, which cover a wide range of flow conditions, soil types and properties, wall batter, back slope angle as well as the interface friction angle, are performed to investigate the effects of these factors on the passive pressure and the corresponding shape of potential failure surfaces in the backfill. The results reveal that the flow conditions have significant effects on the suction and unit weight of the clayey backfill, and hence greatly impact the passive earth pressure of retaining structures. It is expected that present study could provide an insight into evaluation of the passive earth pressure of retaining structures with unsaturated backfills.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Recent Advances in Passive Radiative Cooling: Material Design Approaches

  • Heegyeom Jeon;Youngjae Yoo
    • Elastomers and Composites
    • /
    • 제59권1호
    • /
    • pp.22-33
    • /
    • 2024
  • Passive radiative cooling is a promising technology for cooling objects without energy input. Passive radiative cooling works by radiating heat from the surface, which then passes through the atmosphere and into space. Achieving efficient passive radiative cooling is mainly accomplished by using materials with high emissivity in the atmospheric window (8-13 ㎛). Research has shown that polymers tend to exhibit high emissivity in this spectral range. In addition to elastomers, other materials with potential for passive radiative cooling include metal oxides, carbon-based materials, and polymers. The structure of a passive radiative cooling device can affect its cooling performance. For example, a device with a large surface area will have a greater amount of surface area exposed to the sky, which increases the amount of thermal radiation emitted. Passive radiative cooling has a wide range of potential applications, including building cooling, electronics cooling, healthcare, and transportation. Current research has focused on improving the efficiency of passive radiative cooling materials and devices. With further development, passive radiative cooling can significantly affect a wide range of sectors.

Capacitive방식을 이용한 Passive RFID Tag System 구현 (A Study on Implementation of Passive RFID Tag System Using A Capacitive method)

  • 배명수;여영호;손수국
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(1)
    • /
    • pp.199-202
    • /
    • 2002
  • This paper is about the implementation of Passive RFID(Radio Frequency Identification) tag system using a capacitive method, and explains the design and circuit's structure of this system. Fundamentally the capacitive RFID tag system consists of a tag reader, a passive tag and a host computer. And then this paper shows the system's prototype which analyzes a specification, and suggests the passive RFID system as a new method which manufactures a low cost tag system easily

  • PDF

개폐식 대공간 구조물을 위한 스마트 TMD 설계기법 개발 (Design Method Development of Smart TMD for Retractable-Roof Spatial Structure)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.107-115
    • /
    • 2017
  • In this paper, a structural design method of a smart tuned mass damper (TMD) for a retractable-roof spatial structure under earthquake excitation was proposed. For this purpose, a retractable-roof spatial structure was simplified to a single degree of freedom (SDOF) model. Dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition. This condition was considered in the numerical simulation. A magnetorheological (MR) damper was used to compose a smart TMD and a displacement based ground-hook control algorithm was used to control the smart TMD. The control effectiveness of a smart TMD under harmonic and earthquake excitation were evaluated in comparison with a conventional passive TMD. The vibration control robustness of a smart TMD and a passive TMD were compared along with the variation of natural period of a simplified structure. Dynamic responses of a smart TMD and passive TMD under resonant harmonic excitation and earthquake load were compared by varying mass ratio of TMD to total mass of the simplified structure. The design procedure proposed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.