• Title/Summary/Keyword: Passive safety system

Search Result 226, Processing Time 0.034 seconds

A Study on the Probabilistic Safety Assessment and Sensitivity Analysis of Success Criteria of Large LOCA for APR+ (APR+ 확률론적 안전성평가 및 대형냉각재상실사고 성공기준과 파단크기 민감도 분석)

  • Moon, Horim;Kim, Han Gon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.129-134
    • /
    • 2016
  • Standard design of APR+(advanced power reactor plus) was certified at 2014 by Korea regulatory body. Based on the experience gained from OPR1000 and APR1400, the APR1400 was being developed as a 1,500MWe class reactor using Korean technologies for design code, reactor coolant pump, and man-machine interface system. APR+ has been basically designed to have the seismic design basis of safe shutdown earthquake (SSE) 0.3g, a 4-train safety concept based on N+2 design philosophy, and a passive auxiliary feedwater system (PAFS). Also, safety issues on the Fukushima-type accidents have been extensively reviewed and applied to enhance APR+ safety. APR+ provides higher reliability and safety against tsunami and earthquake. The purpose of this paper is to implement probabilistic safety assessment considering these design features and to analyze sensitivity of core damage frequency for large loss of coolant accident of APR+.

Design Analysis of Ride Comfort- and Driving Safety-control Strategies for the Continuously Controlled Semi-active Suspension Systems (연속 가변식 반능동형 현가시스템의 승차감 및 주행안전성 제어기 설계 해석)

  • 허승진;황성호;박기홍
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.17-23
    • /
    • 2004
  • The semi-active suspension system is getting widely adopted in passenger vehicles for its ability to improve ride comfort over the passive suspension system while not degrading driving safety. A key to the success is to develop practical controllers that yield performance enhancement over the passive damper under various driving conditions. To this end, several control strategies have been studied and evaluated in this research in consideration of practical aspects such as nonlinearity and dynamics of the damper. From simulation results. it has been observed that, with the proposed control schemes, ride comfort can be significantly upgraded while suppressing degradation of driving safety.

Insights from the KNGR Preliminary Level 1 Probabilistic Safety Assessment

  • Na, Jang-Hwan;Oh, Hae-Cheol;Oh, Seung-Jong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.862-868
    • /
    • 1998
  • Korean Next Generation Reactor(KNGR) is a standardized evolutionary Advanced Light Water Reactor design under development Korea Power Company(KEPCO). It incorporates design enhncements such as active and passive advanced design features(ADFs) to increase the plant safety. A Preliminary level 1 Probabilistic Safety Assessment(PSA) has been performed for KNGR to examine the effect of these safety features. The preliminary PSA result shows that it meets the KNGR safety goal on core damage frequency(CDF). The result of this safety assessment shows that the four-train safety systems, and the ADFs such as Passive Secondary Cooling System (PSCS) contributes greatly to the reduction the CDF. Furthermore, several design changes are made or proposed for detailed review based on the PSA insights.

  • PDF

Safety Analysis of APR+ PAFS for CDF Evaluation (노심손상빈도 평가를 위한 APR+ PAFS의 안전 해석)

  • Kang, Sang Hee;Moon, Ho Rim;Park, Young Seop
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.123-128
    • /
    • 2013
  • The Advanced Power Reactor Plus(APR+), which is a GEN III+ reactor based on the APR1400, is being developed in Korea. In order to enhance the safety of the APR+, a passive auxiliary feedwater system(PAFS) has been adopted in the APR+. The PAFS replaces the conventional active auxiliary feedwater system(AFWS) by introducing a natural driving force mechanism while maintaining the system function of cooling the primary side and removing the decay heat. As the PAFS completely replaces the conventional AFWS, it is required to verify the cooling capacity of PAFS for the core damage frequency(CDF) evaluation. For this reason, this paper discusses the cooling performance of the PAFS during transient accidents. The test case and scenarios were picked from the result of the sensitivity analysis in APR+ Probabilistic Safety Assessment(PSA). The analysis was performed by the best estimate thermal-hydraulic code, RELAP5/.MOD3.3. This study shows that the plant maintains the stable state without the core damages under the given test scenarios. The results of PSA considering this analysis' results shows that the CDF values are decreased. The analysis results can be used for more realistic and accurate performance of a PSA.

Strategic analysis on sizing of flooding valve for successful accident management of small modular reactor

  • Hyo Jun An;Jae Hyung Park;Chang Hyun Song;Jeong Ik Lee;Yonghee Kim;Sung Joong Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.949-958
    • /
    • 2024
  • In contrast to all-time flooded small modular reactor (SMR) systems, an in-kind flooding safety system (FSS) has been proposed as a passive safety system applicable to small modular reactors (SMRs) that adopt a metal containment vessel (MCV). Under transient conditions, the FSS can provide emergency cooling to dry reactor cavities and sustain long-term coolability using re-acquired evaporated steam in the reactor building on demand. When designing an FSS, the effect of the flooding flow area is vital as it affects the overall accident sequence and safety. Therefore, in this study, a MELCOR model of a reference SMR is developed and numerical analysis is performed under postulated accident scenarios. Without flooding, the MCV pressure of the reactor module exceeds the design pressure before core damage. To prevent core damage, an emergency flooding strategy is devised using various flow path parameters and requirements to ensure an adequate emergency coolant supply before the core damage is investigated. The results indicate that a flow area exceeding 0.02 m2 is required in the FSS to prevent MCV overpressure and core damage. This study is the first to report a strategic analysis for appropriately sizing an FSS flooding valve applicable to innovative SMRs.

Overall System Description and Safety Characteristics of Prototype Gen IV Sodium Cooled Fast Reactor in Korea

  • Yoo, Jaewoon;Chang, Jinwook;Lim, Jae-Yong;Cheon, Jin-Sik;Lee, Tae-Ho;Kim, Sung Kyun;Lee, Kwi Lim;Joo, Hyung-Kook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1059-1070
    • /
    • 2016
  • The Prototype Gen IV sodium cooled fast reactor (PGSFR) has been developed for the last 4 years, fulfilling the technology demonstration of the burning capability of transuranic elements included in light water reactor spent nuclear fuel. The PGSFR design has been focused on the robustness of safety systems by enhancing inherent safety characteristics of metal fuel and strengthening passive safety features using natural circulation and thermal expansion. The preliminary safety information document as a major outcome of the first design phase of PGSFR development was issued at the end of 2015. The project entered the second design phase at the beginning of 2016. This paper summarizes the overall structures, systems, and components of nuclear steam supply system and safety characteristics of the PGSFR. The research and development activities to demonstrate the safety performance are also briefly introduced in the paper.

Wheelset Steering Control for Improvement a Running Safety on Curved Track (곡선부 주행안전성 향상을 위한 윤축 조향 제어)

  • Hur, Hyun Moo;Ahn, Da Hoon;Kim, Nam Po;Sim, Kyung Seok;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

Passive Heat Removal Characteristics of SMART

  • Seo, Jae-Kwang;Kang, Hyung-Seok;Yoon, Joo-Hyun;Kim, Hwan-Yeol;Cho, Bong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.623-628
    • /
    • 1998
  • A new advanced integral reactor of 330 MWt thermal capacity named SMART (System-Integrated Modular Advanced Reactor) is currently under development in Korea Atomic Energy Research Institute (KAERI) for multi-purpose applications. Modular once-through steam generator (SG) and self-pressurizing pressurizer equipped with wet thermal insulator and cooler are essential components of the SMART. The SMART Provides safety systems such as Passive Residual Heat Removal System (PRHRS). In this study, a computer code for performance analysis of the PRHRS is developed by modeling relevant components and systems of the SMART. Using this computer code, a performance analysis of the PRHRS is performed in order to check whether the passive cooling concept using the PRHRS is feasible. The results of the analysis show that PRHRDS of the SMART has excellent passive heat removal characteristics.

  • PDF

Numerical Investigation on Natural Circulation in a Simplified Passive Containment Cooling System (단순화된 피동 원자로건물 냉각계통 내 자연순환에 관한 수치적 연구)

  • Suh, Jungsoo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.92-98
    • /
    • 2018
  • The flow of cooling water in a passive containment cooling system (PCCS), used to remove heat released in design basis accidents from a concrete containment of light water nuclear power plant, was conducted in order to investigate the thermo-fluid equilibrium among many parallel tubes of PCCS. Numerical simulations of the subcooled boiling flow within a coolant loop of a PCCS, which will be installed in innovative pressurized-water reactor (PWR), were conducted using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. As the first step, the simplified geometry of PCCS with 36 tubes was modeled in order to reduce computational resource. Even and uneven thermal loading conditions were applied at the outer walls of parallel tubes for the simulation of the coolant flow in the PCCS at the initial phase of accident. It was observed that the natural circulation maintained in single-phase for all even and uneven thermal loading cases. For uneven thermal loading cases, coolant velocity in each tube were increased according to the applied heat flux. However, the flows were mixed well in the header and natural circulation of the whole cooling loop was not affected by uneven thermal loading significantly.

IMPROVEMENTS OF CONDENSATION HEAT TRANSFER MODELS IN MARS CODE FOR LAMINAR FLOW IN PRESENCE OF NON-CONDENSABLE GAS

  • Bang, Young-Suk;Chun, Ji-Ran;Chung, Bub-Dong;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1015-1024
    • /
    • 2009
  • The presence of a non-condensable gas can considerably reduce the level of condensation heat transfer. The non-condensable gas effect is a primary concern in some passive systems used in advanced design concepts, such as the Passive Residual Heat Removal System (PRHRS) of the System-integrated Modular Advanced ReacTor (SMART) and the Passive Containment Cooling System (PCCS) of the Simplified Boiling Water Reactor (SBWR). This study examined the capability of the Multi-dimensional Analysis of Reactor Safety (MARS) code to predict condensation heat transfer in a vertical tube containing a non-condensable gas. Five experiments were simulated to evaluate the MARS code. The results of the simulations showed that the MARS code overestimated the condensation heat transfer coefficient compared to the experimental data. In particular, in small-diameter cases, the MARS predictions showed significant differences from the measured data, and the condensation heat transfer coefficient behavior along the tube did not match the experimental data. A new method for calculating condensation heat transfer coefficient was incorporated in MARS that considers the interfacial shear stress as well as flow condition determination criterion. The predictions were improved by using the new condensation model.