• 제목/요약/키워드: Passive pile

검색결과 29건 처리시간 0.021초

융해-동결작용을 고려한 말뚝 기초에 관한 수치해석 연구 (Numerical Analysis of Pile Foundation Considering the Thawing and Freezing Effects)

  • 박우진;박동수;신문범;서영교
    • 한국지반공학회논문집
    • /
    • 제39권5호
    • /
    • pp.51-63
    • /
    • 2023
  • 계절성 동토의 온도 변화에 따른 융해 및 동결작용에 의한 지반의 거동이 말뚝 기초의 변위 및 지지력에 끼치는 영향을 파악하기 위한 수치해석을 수행하였다. 수치해석은 온도 변화에 따른 지반-말뚝 상호작용을 모사하기 위해 유한요소법 기반의 TM 모델링(Thermo-Mechanical coupled Modeling)을 적용하였으며, 동결 지반은 온도 의존적 비선형 물성을 적용하였다. 지반의 구성 모델은 소성 거동을 모사하기 위한 MCR 모델(Mohr Coulomb with Rankine Tensile cut-off Model)과 HDP 모델(Nonlinear Hyperbolic Drucker-Prager Model)을 각각 적용하였으며, 말뚝의 길이 및 너비 조건을 선정해 수치해석 결과를 비교 및 분석하였다. 수치해석 결과는 HDP 구성 모델이 비교적 작은 지반 거동과 지지력을 보였으나, 전체적으로는 말뚝의 길이 및 너비 조건에 따라 지지력 및 말뚝 머리의 변위 결과의 양상과 그 크기는 유사하게 나타났다. 지반의 융해-동결작용으로 인한 말뚝 머리(pile head)의 수직 변위는 길이 조건이 짧을수록 변위의 변화 폭이 크게 나타났다. 수직 변위는 길이 조건에 따라 MCR 구성 모델에서는 최대 0.0387m의 융해 침하와 0.0277m의 동결 융기가 발생했으며, HDP 구성 모델에서는 최대 0.0367m의 융해 침하와 0.0264m의 동결 융기가 발생했다. 또한 두 탄소성 모델에 대한 말뚝의 지지력 결과는 말뚝의 길이 조건보다 너비 조건에서 더 큰 차이를 보였으며, 너비 조건 L에서 최대 약 14.7%, M에서 최대 약 5.4%, S에서 최대 약 5.3%가 발생하였다. 이에 말뚝 머리의 수직 변위와 말뚝의 지지력은 말뚝-지반의 접촉 면적에 영향을 크게 받으며, 지반 내 활성층의 활성도에 따라 차이를 보였다.

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.

앵커 또는 폐타이어 벽체를 이용한 사면보강공법의 안정해석 및 설계 (Stability Analysis and Design of Slope Reinforcing Method Using Anchored or Waste Tyre Wall)

  • 김홍택;강인규
    • 한국지반공학회지:지반
    • /
    • 제10권2호
    • /
    • pp.69-84
    • /
    • 1994
  • 본 연구에서는 불안정한 사면의 효율적 보강을 위해 앵커 또는 폐타이어 벽체 공법의 적용성을 설계측면에서 검토하였다. 이를 위해, 앵커 또는 폐타이어 벽체가 설치된 보강사면의 외적안정해석법 제시가 우선 이루어졌으며, 또한 Meyerhof 지지력 이론 및 횡하중을 받는 말뚝단면의 발생응력분포 실험결과를 토대로 벽체 자체의 내적안정에 관련된 앵커 또는 폐타이어에서 발휘되는 수동저항력 예측을 위한 이론식을 제시하였다. 본 연구에서 제시된 수동저항력 계산식의 적합성 검토를 위해 Murray 인발실험결과와의 비교가 이루어졌으며, 아울러 강재보강띠를 적용하는 일반 보강토벽체 공법과 설계상의 장점 등에 관해 비교도 이루어졌다. 최종적으로는 앵커 또는 폐타이어 벽체가 설치된 보강사면 설계예를 제시하여 이에 대한 안정검토 및 겨로가분석이 수행되었으며, 기존 불안정한 사면의 경사도를 낮추어 안정성을 확보하는 공법과의 비교를 통해 앵커 또는 폐타이어 벽체공법의 효율성 검토도 이루어졌다.

  • PDF

A REVIEW OF INHERENT SAFETY CHARACTERISTICS OF METAL ALLOY SODIUM-COOLED FAST REACTOR FUEL AGAINST POSTULATED ACCIDENTS

  • SOFU, TANJU
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.227-239
    • /
    • 2015
  • The thermal, mechanical, and neutronic performance of the metal alloy fast reactor fuel design complements the safety advantages of the liquid metal cooling and the pool-type primary system. Together, these features provide large safety margins in both normal operating modes and for a wide range of postulated accidents. In particular, they maximize the measures of safety associated with inherent reactor response to unprotected, doublefault accidents, and to minimize risk to the public and plant investment. High thermal conductivity and high gap conductance play the most significant role in safety advantages of the metallic fuel, resulting in a flatter radial temperature profile within the pin and much lower normal operation and transient temperatures in comparison to oxide fuel. Despite the big difference in melting point, both oxide and metal fuels have a relatively similar margin to melting during postulated accidents. When the metal fuel cladding fails, it typically occurs below the coolant boiling point and the damaged fuel pins remain coolable. Metal fuel is compatible with sodium coolant, eliminating the potential of energetic fuel-coolant reactions and flow blockages. All these, and the low retained heat leading to a longer grace period for operator action, are significant contributing factors to the inherently benign response of metallic fuel to postulated accidents. This paper summarizes the past analytical and experimental results obtained in past sodium-cooled fast reactor safety programs in the United States, and presents an overview of fuel safety performance as observed in laboratory and in-pile tests.

벽체 강성에 따른 토사유입차단판의 최적 길이 산정에 관한 실험적 연구 (An Experimental Study on the Estimation of Optimum Length of Soil Flow Protector with Wall Stiffness)

  • 유재원;서민수;손수원;임종철
    • 대한토목학회논문집
    • /
    • 제39권6호
    • /
    • pp.789-799
    • /
    • 2019
  • 교대, 통로박스 등 말뚝기초로 지지된 구조물에서는 침하가 거의 발생하지 않지만, 구조물 저면 하부에는 공동이 발생하게 된다. 이에 따른 문제점으로는 측면지반에서 공동으로 유출된 토사에 의해 구조물 측면 지반의 침하를 가속화하여 더 큰 침하가 발생하게 된다. 따라서 말뚝 기초로 지지된 구조물 하부의 공동 발생으로 인한 문제점을 예방하고자 구조물의 측면에 쉽게 설치가 가능한 토사유입차단판(soil Flow Protector; 이하 'FLP')이 개발되었다. 본 연구에서는 FLP의 침하감소 효과를 입증하고 최적 길이를 산정하고자 실내모형실험을 수행하였고, 그 결과 FLP의 설치함으로서 측면지반의 침하량이 감소하고 공동으로의 토사 유출을 방지하였고, FLP의 강성이 작으면 상부의 토압은 정지 또는 주동영역이 되어 안정성에 유리하지 않지만, 충분히 크면 상부의 토압은 수동영역이 되어 안정성에 유리하다. 또한 FLP의 강성이 작은 경우에는 일정 길이 비 이상에서는 오히려 감소하였으나, 큰 경우에는 설치길이가 증가할수록 침하량 감소에 효과적이다. 이에 따른 박스구조물 높이(H = 250 mm)에 대한 최적 길이 비는 연성 1.38, 강성 0.73으로 산정되었다.

A Simplified Numerical Model for an Integral Abutment Bridge Considering the Restraining Effects Due to Backfill

  • Hong, Jung-Hee;Jung, Jae-Ho;You, Sung-Kun;Yoon, Soon-Jong
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.759-767
    • /
    • 2003
  • This paper presents the simplified but more rational analysis method for the prediction of additional internal forces induced in integral abutment bridges. These internal forces depend upon the degree of restraint provided tc the deck by the backfill soil adjacent to the abutments and piles. In addition, effect of the relative flexural stiffness ratio among pile foundations, abutment, and superstructure on the structural behavior is also an important factor. The first part of the paper develops the stiffness matrices, written in terms of the soil stiffness, for the lateral and rotational restraints provided by the backfill soil adjacent to the abutment. The finite difference analysis is conducted and it is confirmed that the results are agreed well with the predictions obtained by the proposed method. The simplified spring model is used in the parametric study on the behavior of simple span and multi-span continuous integral abutment PSC beam bridges in which the abutment height and the flexural rigidity of piles are varied. These results are compared with those obtained by loading Rankine passive earth pressure according to the conventional method. From the results of parametric study, it was shown that the abutment height, the relative flexural rigidity of superstructure and piles, and the earth pressure induced by temperature change greatly affect the overall structural response of the bridge system. It may be possible to obtain more rational and economical designs for integral abutment bridges by the proposed method.

형상비 및 지반특성에 따른 교대 강관파일의 변위특성에 대한 해석적 연구 (Analytical Investigation on the Deflection Characteristics of Steel Piles in Bridge Abutment for Aspect Ratio and Ground Properties)

  • 장갑철;장경호;한중근;이양규;김종렬
    • 한국공간구조학회논문집
    • /
    • 제7권4호
    • /
    • pp.73-78
    • /
    • 2007
  • 연약지반에서 측방 유동에 의해 주변 지반에 큰 변형을 일으키며 이로 인하여 말뚝기초에 손상을 입히게 된다. 이러한 경우 설치된 말뚝을 수동말뚝이라 하며 편재하중이 작용하게 되고 이로 인해 측방토압을 받게 되며 측방변위가 발생하여 상부구조물에 영향을 미치게 된다. 그러나 국내의 경우 이러한 말뚝과 교대 변위간의 관계에 대한 예측 및 메커니즘에 대한 연구가 부족한 실정이다. 본 연구에서는 교대이동에 대한 해석을 위해 입체, 판 및 프레임 요소를 복합적으로 해석할 수 있는 연성 3차원 유한요소해석 프로그램을 개발하였다. 개발된 연성해석 프로그램을 이용하여 연약지반상 형상비(두께-지름비, t/D비)를 변수로 한 교대강관파일의 변형특성을 명확히 하였다.

  • PDF

Soil and ribbed concrete slab interface modeling using large shear box and 3D FEM

  • Qian, Jian-Gu;Gao, Qian;Xue, Jian-feng;Chen, Hong-Wei;Huang, Mao-Song
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.295-312
    • /
    • 2017
  • Cast in situ and grouted concrete helical piles with 150-200 mm diameter half cylindrical ribs have become an economical and effective choice in Shanghai, China for uplift piles in deep soft soils. Though this type of pile has been successful used in practice, the reinforcing mechanism and the contribution of the ribs to the total resistance is not clear, and there is no clear guideline for the design of such piles. To study the inclusion of ribs to the contribution of shear resistance, the shear behaviour between silty sand and concrete slabs with parallel ribs at different spacing and angles were tested in a large direct shear box ($600mm{\times}400mm{\times}200mm$). The front panels of the shear box are detachable to observe the soil deformation after the test. The tests were modelled with three-dimensional finite element method in ABAQUS. It was found that, passive zones can be developed ahead of the ribs to form undulated failure surfaces. The shear resistance and failure mode are affected by the ratio of rib spacing to rib diameter. Based on the shape and continuity of the failure zones at the interface, the failure modes at the interface can be classified as "punching", "local" or "general" shear failure respectively. With the inclusion of the ribs, the pull out resistance can increase up to 17%. The optimum rib spacing to rib diameter ratio was found to be around 7 based on the observed experimental results and the numerical modelling.

Different approaches for numerical modeling of seismic soil-structure interaction: impacts on the seismic response of a simplified reinforced concrete integral bridge

  • Dhar, Sreya;Ozcebe, Ali Guney;Dasgupta, Kaustubh;Petrini, Lorenza;Paolucci, Roberto
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.373-385
    • /
    • 2019
  • In this article, different frequently adopted modeling aspects of linear and nonlinear dynamic soil-structure interaction (SSI) are studied on a pile-supported integral abutment bridge structure using the open-source platform OpenSees (McKenna et al. 2000, Mazzoni et al. 2007, McKenna and Fenves 2008) for a 2D domain. Analyzed approaches are as follows: (i) free field input at the base of fixed base bridge; (ii) SSI input at the base of fixed base bridge; (iii) SSI model with two dimensional quadrilateral soil elements interacting with bridge and incident input motion propagating upwards at model bottom boundary (with and without considering the effect of abutment backfill response); (iv) simplified SSI model by idealizing the interaction between structural and soil elements through nonlinear springs (with and without considering the effect of abutment backfill response). Salient conclusions of this paper include: (i) free-field motions may differ significantly from those computed at the base of the bridge foundations, thus put a significant bias on the inertial component of SSI; (ii) conventional modeling of SSI through series of soil springs and dashpot system seems to stay on the safer side under dynamic conditions when one considers the seismic actions on the structure by considering a fully coupled SSI model; (iii) consideration of abutment-backfill in the SSI model positively affects the general response of the bridge, as a result of large passive resistance that may develop behind the abutments.