• 제목/요약/키워드: Passive haptic device

검색결과 8건 처리시간 0.029초

Direct Control of a Passive Haptic Device Based on Passive Force Manipulability Ellipsoid Analysis

  • Changhyun Cho;Kim, Munsang;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권2호
    • /
    • pp.238-246
    • /
    • 2004
  • In displaying a virtual wall using a passive haptic device equipped with passive actuators such as electric brakes, unsmooth motion frequently occurs. This undesirable behavior is attributed to time delay due to slowness in the virtual environment update and force approximation due to the inability of a brake to generate torque in arbitrary directions. In this paper a new control scheme called direct control is proposed to achieve smooth display on the wall-following task with a passive haptic device. In direct control, brakes are controlled so that the normal component of a resultant force at the end-effector vanishes, based on the force analysis at the end-effector of the passive haptic device using the passive FME (Force Manipulability Ellipsoid). Various experiments have been conducted to verify the validity of the direct control scheme with a 2-link passive haptic system.

Passivity Control of a Passive Haptic Device based on Passive FME Analysis

  • Cho, Chang-Hyun;Kim, Beom-Seop;Kim, Mun-Sang;Song, Jae-Bok;Park, Mi-Gnon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1559-1564
    • /
    • 2003
  • In this paper, a control method is presented to improve performance of haptic display on a passive haptic device equipped with passive actuators. In displaying a virtual wall with the passive haptic device, an unstable behavior occurs with excessive actions of brakes due to the time delay mainly arising from the update rate of the virtual environment and force approximation originated from the characteristics of the passive actuators. The previous T.D.P.C. (Time Domain Passivity Control) method was not suitable for the passive haptic device, since a programmable damper used in the previously introduced T.D.P.C. method easily leads to undesirable behaviors. A new passivity control method is evaluated with considering characteristics of the passive device. First, we propose a control method which is designed under the analysis of the passive FME (Force Manipulability Ellipsoid). And then a passivity control scheme is applied to the proposed control method. Various experiments have been conducted to verify the proposed method with a 2-link mechanism.

  • PDF

Optimized Design of a Planar Haptic Device Using Passive Actuators

  • Kim, Tae-Woo;Cho, Chang-Hyun;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1565-1570
    • /
    • 2003
  • Passive Haptic Devices have more benefit than the active in Stability. But Apart from benefits, it shows poor performance in haptic display. The author proposed the passive FME(Force Manipulability Ellipsoid) which can graphically show force generating ability of a passive haptic device. In this paper, performance indexes for the force approximation and pseudo friction cone are obtained with the passive FME and an optimized planar device with the indexes is proposed. Based on the above theory, experiment is conducted.

  • PDF

컨택트 작업 시 햅틱 인터렉션의 투명성 향상을 위한 Virtual Coupling 기법의 설계 (Toward Transparent Virtual Coupling for Haptic Interaction during Contact Tasks)

  • 김명신;이동준
    • 로봇학회논문지
    • /
    • 제8권3호
    • /
    • pp.186-196
    • /
    • 2013
  • Since its introduction (e.g., [4, 6]), virtual coupling technique has been de facto way to connect a haptic device with a virtual proxy for haptic rendering and control. However, because of the single dependence on spring-damper feedback action, this virtual coupling suffers from the degraded transparency particularly during contact tasks when large device/proxy-forces are involved. In this paper, we propose a novel virtual coupling technique, which, by utilizing passive decomposition, reduces device-proxy position deviation even during the contact tasks while also scaling down (or up) the apparent inertia of the coordinated device-proxy. By doing so, we can significantly improve transparency between multiple degree of freedom (possibly nonlinear) haptic device and virtual proxy. In other to use passive decomposition, disturbance observer of [3] is adopted to estimate human force with some dead-zone modification to avoid "winding-up" force estimation in the presence of device torque saturation. Some preliminary experimental results are also given to illustrate efficacy of the proposed technique.

Design of a New Haptic Device using a Parallel Mechanism with a Gimbal Mechanism

  • Lee, Sung-Uk;Shin, Ho-Chul;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2331-2336
    • /
    • 2005
  • This paper proposes a new haptic device using a parallel mechanism with gimbal type actuators. This device has three legs actuated by 2-DOF gimbal mechanisms, which make the device simple and light by fixing all the actuators to the base. Three extra sensors are placed at passive joints to obtain a unique solution of the forward kinematics problem. The proposed haptic device is developed for an operator to use it on a desktop in due consideration of the size of an average Korean. The proposed haptic device has a small workspace for on operator to use it on a desktop and more sensitivity than a serial type haptic device. Therefore, the motors of the proposed haptic device are fixed at the base plate so that the proposed haptic device has a better dynamic bandwidth due to a low moving inertia. With this conceptual design, optimization of the design parameters is carried out. The objective function is defined by the fuzzy minimum of the global design indices, global force/moment isotropy index, global force/moment payload index, and workspace. Each global index is calculated by a SVD (singular value decomposition) of the force and moment parts of the jacobian matrix. Division of the jacobian matrix assures a consistency of the units in the matrix. Due to the nonlinearity of this objective function, Genetic algorithms are adopted for a global optimization.

  • PDF

A Review of Haptic Perception: Focused on Sensation and Application

  • Song, Joobong;Lim, Ji Hyoun;Yun, Myung Hwan
    • 대한인간공학회지
    • /
    • 제31권6호
    • /
    • pp.715-723
    • /
    • 2012
  • Objective: The aim of this study is to investigate haptic perception related researches into three perspectives: cutaneous & proprioceptive sensations, active & passive touch, and cognition & emotion, then to identify issues for implementing haptic interactions. Background: Although haptic technologies had improved and become practical, more research on the method of application is still needed to actualize the multimodal interaction technology. Systematical approached to explore haptic perception is required to understand emotional experience and social message, as well as tactile feedback. Method: Content analysis were conducted to analyze trend in haptic related research. Changes in issues and topics were investigated using sensational dimensions and the different contents delivered via tactile perception. Result: The found research opportunities were haptic perception in various body segments and emotion related proprioceptive sensation. Conclusion: Once the mechanism of how users perceives haptic stimuli would help to develop effective haptic interactrion and this study provide insights of what to focus for the future of haptic interaction. Application: This research is expected to provide presence, and emotional response applied by haptic perception to fields such as human-robot, human-device, and telecommunication interaction.

Development of a Tele-Rehabilitation System for Outcome Evaluation of Physical Therapy

  • Park, Hyung-Soon;Lee, Jeong-Wan
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권3호
    • /
    • pp.179-186
    • /
    • 2008
  • This paper presents a portable tele-assessment system designed for remote evaluation of the hypertonic elbow joint of neurologically impaired patients. A patient's upper limb was securely strapped to a portable limb-stretching device which is connected through Internet to a portable haptic device by which a clinician remotely moved the patient's elbow joint and felt the resistance from the patient. Elbow flexion angle and joint torques were measured from both master and slave devices and bilaterally fed back to their counterparts. In order to overcome problems associated with the network latency, two different tele-operation schemes were proposed depending on relative speed of tasks compared to the amount of time delay. For slow movement tasks, the bilateral tele-operation was achieved in real-time by designing control architectures after causality analysis. For fast movement tasks, we used a semi-real-time tele-operation scheme which provided the clinicians with stable and transparent feeling. The tele-assessment system was verified experimentally on patients with stroke. The devices were made portable and low cost, which makes it potentially more accessible to patients in remote areas.

원키 키보드: 웨어러블 컴퓨팅 환경에서 문자입력을 지원하는 초소형 QWERTY 키보드 (One-key Keyboard: A Very Small QWERTY Keyboard Supporting Text Entry for Wearable Computing)

  • 이우훈;손민정
    • 한국HCI학회논문지
    • /
    • 제1권1호
    • /
    • pp.21-28
    • /
    • 2006
  • 상용화된 웨어러블 컴퓨팅용 문자입력장치 중 팔목에착용하는 키보드가 많은데 대부분 소형화를 위해 키 수를 줄이는 방식을 택하고 있다. 하지만 충분한 착용성 확보를 위해 키보드의 키 수를 대폭 줄일 경우 보통 문자당 키입력수(KSPC)가 증가하기 때문에 입력효율이 저하되고 학습을 위해 부가적인 노력이 요구되는 등 우수한 웨어러블 키보드를 개발하는데 있어 착용성과 사용성이 상충하는 문제상황에 직면하게 된다. 본 연구는 이런 문제를 해결하기 위해 키 간격을 줄여 극적으로 키보드를 소형화할 수 있는 방법을 탐색하였다. 일련의 실험을 통해 키 간격 7mm인 키보드의 경우 물리적 폼팩터차원에서 착용성과 사회적 수용성이 충분히 긍정적이고 문자입력속도가 3세션 평균 15.0WPM 정도의 가능성 있는 결과를 도출했다. 하지만 수동적인 촉각 피드백과 입력에 대한 충분한 시각적 피드백의 부재가 문자입력수행도를 저하시킨다는 실험참가자들의 지적에 따라 원키 키보드라는 개념을 제안하였다. 전통적인 키보드의 경우 하나의 키에 하나의 문자가 할당한다. 반면 원키 키보드의 경우는 $70mm{\times}35mm$ 사이즈의 단일 키 위에 10*5배열의 QWERTY 키보드 문자배열을 모두 표시하였다. 따라서 일반적인 키보드와는 달리 키 판에서 어떤 문자를 입력했는지 키 입력 순간 손가락의 위치를 센싱하여 해당 문자를 계산하도록 하였다. 원키 키보드에 대한 입력효율 평가를 통해 5세션 평균 18.9WPM의 입력속도와 6.7%에러율을 기록했으면 최고 24.5WPM을 기록했다. 실험결과를 통해 본 연구에서 제안한 원키 키보드는 웨어러블 컴퓨팅 환경에서 착용성, 사회적 수용성, 입력효율성, 학습용이성 등의 상충적 요소에 대한 적절한 절충점을 제시하는 가능성 있는 문자입력장치로 평가되었다.

  • PDF