• 제목/요약/키워드: Passive detection

검색결과 260건 처리시간 0.029초

60dB 0.18μm CMOS 저전력 이득 조절 증폭기 (60dB 0.18μm CMOS Low-Power Programmable Gain Amplifier)

  • 박승훈;이정훈;김철환;류지열
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 춘계학술대회
    • /
    • pp.349-351
    • /
    • 2013
  • 본 논문에서는 강판 결함 검출 시스템의 아날로그 신호처리를 하기 위해 저전력 이득 조절 증폭기(PGA)를 설계하였다. 설계된 PGA는 홀 센서에서 나오는 신호를 검출 하려는 결함의 종류에 따라 그 이득을 6dB에서 60dB까지 7가지 단계로 조절 가능하다. PGA이득은 선형성 및 칩 크기를 고려하여 스위치의 온-저항과 수동소자 크기에 의해서 조절 되도록 설계하였다. 이득오차는 0.2dB 보다 작으며 소비전력은 0.47mW이다. 전원전압 1.8V에 $0.18{\mu}m$ CMOS 공정을 이용하여 PGA를 설계하였다.

  • PDF

Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale

  • Lee, Chang-Soo;Lee, Sang-Ho;Kim, Yun-Gon;Choi, Chang-Hyoung;Kim, Yong-Kweon;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권2호
    • /
    • pp.146-153
    • /
    • 2006
  • A passive microfluidic delivery system using hydrophobic valving and pneumatic control was devised for microfluidic handling on a chip. The microfluidic metering, cutting, transport, and merging of two liquids on the chip were correctly performed. The error range of the accuracy of microfluid metering was below 4% on a 20 nL scale, which showed that microfluid was easily manipulated with the desired volume on a chip. For a study of the feasibility of biochemical reactions on the chip, a single enzymatic reaction, such as ${\beta}-galactosidase$ reaction, was performed. The detection limit of the substrate, i.e. fluorescein $di-{\beta}-galactopyranoside$ (FDG) of the ${\beta}-galactosidase$ (6.7 fM), was about 76 pM. Additionally, multiple biochemical reactions such as in vitro protein synthesis of enhanced green fluorescence protein (EGFP) were successfully demonstrated at the nanoliter scale, which suggests that our microfluidic chip can be applied not only to miniaturization of various biochemical reactions, but also to development of the microfluidic biochemical reaction system requiring a precise nano-scale control.

Detection and Quantification of Screw-Home Movement Using Nine-Axis Inertial Sensors

  • Jeon, Jeong Woo;Lee, Dong Yeop;Yu, Jae Ho;Kim, Jin Seop;Hong, Jiheon
    • The Journal of Korean Physical Therapy
    • /
    • 제31권6호
    • /
    • pp.333-338
    • /
    • 2019
  • Purpose: Although previous studies on the screw-home movement (SHM) for autopsy specimen and walking of living persons conducted, the possibility of acquiring SHM based on inertial measurement units received little attention. This study aimed to investigate the possibility of measuring SHM for the non-weighted bearing using a micro-electro-mechanical system-based wearable motion capture system (MEMSS). Methods: MEMSS and camera-based motion analysis systems were used to obtain kinematic data of the knee joint. The knee joint moved from the flexion position to a fully extended position and then back to the start point. The coefficient of multiple correlation and the difference in the range of motion were used to assess the waveform similarity in the movement measured by two measurement systems. Results: The waveform similarity in the sagittal plane was excellent and the in the transverse plane was good. Significant differences were found in the sagittal plane between the two systems (p<0.05). However, there was no significant difference in the transverse plane between the two systems (p>0.05). Conclusion: The SHM during the passive motion without muscle contraction in the non-weighted bearing appeared in the entire range. We thought that the MEMSS could be easily applied to the acquisition of biomechanical data on the knee related to physical therapy.

국내 초전도 한류기 요구와 하이브리드 초전도 한류기 (Domestic Efforts for SFCL Application and Hybrid SFCL)

  • 현옥배;김혜림;임성우;심정욱;박권배;오일성
    • Progress in Superconductivity
    • /
    • 제10권1호
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

It is Time to Have Rest: How do Break Types Affect Muscular Activity and Perceived Discomfort During Prolonged Sitting Work

  • Ding, Yi;Cao, Yaqin;Duffy, Vincent G.;Zhang, Xuefeng
    • Safety and Health at Work
    • /
    • 제11권2호
    • /
    • pp.207-214
    • /
    • 2020
  • Background: Prolonged sitting at work can lead to adverse health outcomes. The health risk of office workers is an increasing concern for the society and industry, with prolonged sitting work becoming more prevalent. Objective: This study aimed to explore the variation in muscle activities during prolonged sitting work and found out when and how to take a break to mitigate the risk of muscle symptoms. Methods: A preliminary survey was conducted to find out the prevalence of muscle discomfort in sedentary work. Firstly, a 2-h sedentary computer work was designed based on the preliminary study to investigate the variation in muscle activities. Twenty-four participants took part in the electromyography (EMG) measurement study. The EMG variations in the trapezius muscle and latissimus dorsi were investigated. Then the intervention time was determined based on the EMG measurement study. Secondly, 48 participants were divided into six groups to compare the effectiveness of every break type (passive break, active break of changing their posture, and stand and stretch their body with 5 or 10 mins). Finally, data consisting of EMG amplitudes and spectra and subjective assessment of discomfort were analyzed. Results: In the EMG experiment, results from the joint analysis of the spectral and amplitude method showed muscle fatigue after about 40 mins of sedentary work. In the intervention experiment, the results showed that standing and stretching for 5 mins was the most effective break type, and this type of break could keep the muscles' state at a recovery level for about 30-45 mins. Conclusions: This study offers the possibility of being applied to office workers and provides preliminary data support and theoretical exploration for a follow-up early muscle fatigue detection system.

타일형 프로젝터를 이용한 저주파 능동 반향음 감소 기법 (Low-Frequency Active Echo Reduction Using a Tile Projector)

  • 이재완;우상범;장하다;이근상;김완구;강휘석;엄원석;박영철;윤석왕;서영수
    • 한국음향학회지
    • /
    • 제33권6호
    • /
    • pp.366-374
    • /
    • 2014
  • 저주파 능동 소나를 이용한 잠수함 탐지 기술이 개발됨에 따라, 기존의 수동 무반향 타일을 대치할 새로운 잠수함 스텔스 기술이 요구되는 추세이다. 본 연구에서는 선체 표면과 같은 대면적에 적용 가능한 타일형 프로젝터를 이용하여 능동 임피던스 정합을 구현함으로써 저주파 반향음 감소를 도모하는 기법을 제안한다. 먼저 능동 임피던스 정합 기법의 기술적 타당성을 확인하기 위하여 유한요소 모델을 이용한 저주파 반향음 감소 시뮬레이션을 수행하였다. 이를 바탕으로 타일형 프로젝터를 설계 및 제작하여 음향수조에서 저주파 반향음 감소 실험을 수행하였다.

위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발 (A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario)

  • 신명인;이진호;홍우영;김우식;배호석;조현진
    • 한국시뮬레이션학회논문지
    • /
    • 제29권2호
    • /
    • pp.21-33
    • /
    • 2020
  • 본 연구에서는 무인잠수정의 효과적인 대잠전 수행을 위해, 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터를 개발하였다. 먼저, 대잠전 분야에서 무인잠수정의 임무 및 운용개념을 분석하고, 가장 주요한 임무 중 하나인 위험제어(Hold at Risk)를 시뮬레이션 시나리오로 선정하였다. 다음으로, 시뮬레이터 구성요소 모델을 위하여, 플랫폼별(무인잠수정, 표적 잠수함) 운동모델, 음향모델 및 환경모델을 제시하였다. 특히 음향모델에서는 센서 배열에 따른 빔패턴을 기반으로 수동 소나방정식을 이용하여 탐지여부를 판단하였다. 또한, 표적의 방위 및 고각 추정을 위하여 진폭기반 방위 추정법과 위상 모노펄스 추정기법을 각각 적용하였다. 개발된 시뮬레이터를 통해 센서 배열 변화에 따른 결과의 경향성이 기본적인 빔패턴 이론과 일치하는 것을 보여주며, 다양한 시나리오에 대한 적용 가능성을 시사한다.

소형수조에서 음향재료의 반향음감소와 투과손실 측정시스템 구성 (Measurement System for Performance Evaluation of Acoustic Materials in a Small Water Tank)

  • 신미루;조정홍;이경택;김재수;전재진;함일배;강창기
    • 한국음향학회지
    • /
    • 제30권2호
    • /
    • pp.63-72
    • /
    • 2011
  • 본 논문은 반향음과 투과음을 감소시키기 위한 평판형 음향재료의 성능평가 장치를 제작하고 측정시스템을 구성하며 표준표적을 이용한 검증을 통해 신뢰성을 확보하는 데 목적이 있다. 반향음감소와 투과손실 측정은 신호간섭이 없도록 대형수조에서 실시되는 것이 일반적이지만, 본 논문에서는 신호간섭을 고려해야 하는 소형수조에서 최저 30 kHz까지 측정이 가능한 측정시스템을 구성하였다. 이를 위해 신호모의를 통해 신호간섭이 없는 최적의 기하학적 배치를 도출하였으며, 획득한 신호를 시간영역과 주파수영역의 총 네 가지 방법으로 ER과 TL을 도출하는 신호처리 알고리즘을 확립하였다. 마지막으로 대형수조에서의 전파손실 실측실험을 통해 측정시스템을 보정하고 알루미늄 판과 스티로폼을 표준표적으로 사용한 측정결과를 Brekhovskikh Layer Model과 비교하여 측정시스템 검증을 수행하였다.

Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure

  • Cahill, Paul;Pakrashi, Vikram;Sun, Peng;Mathewson, Alan;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.287-303
    • /
    • 2018
  • Applications of energy harvesting from mechanical vibrations is becoming popular but the full potential of such applications is yet to be explored. This paper addresses this issue by considering an application of energy harvesting for the dual objective of serving as an indicator of structural health monitoring (SHM) and extent of control. Variation of harvested energy from an undamaged baseline is employed for this purpose and the concept is illustrated by implementing it for active vibrations of a pipe structure. Theoretical and experimental analyses are carried out to determine the energy harvesting potential from undamaged and damaged conditions. The use of energy harvesting as indicator for control is subsequently investigated, considering the effect of the introduction of a tuned mass damper (TMD). It is found that energy harvesting can be used for the detection and monitoring of the location and magnitude of damage occurring within a pipe structure. Additionally, the harvested energy acts as an indicator of the extent of reduction of vibration of pipes when a TMD is attached. This paper extends the range of applications of energy harvesting devices for the monitoring of built infrastructure and illustrates the vast potential of energy harvesters as smart sensors.

A wireless guided wave excitation technique based on laser and optoelectronics

  • Park, Hyun-Jun;Sohn, Hoon;Yun, Chung-Bang;Chung, Joseph;Kwon, Il-Bum
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.749-765
    • /
    • 2010
  • There are on-going efforts to utilize guided waves for structural damage detection. Active sensing devices such as lead zirconate titanate (PZT) have been widely used for guided wave generation and sensing. In addition, there has been increasing interest in adopting wireless sensing to structural health monitoring (SHM) applications. One of major challenges in wireless SHM is to secure power necessary to operate the wireless sensors. However, because active sensing devices demand relatively high electric power compared to conventional passive sensors such as accelerometers and strain gauges, existing battery technologies may not be suitable for long-term operation of the active sensing devices. To tackle this problem, a new wireless power transmission paradigm has been developed in this study. The proposed technique wirelessly transmits power necessary for PZT-based guided wave generation using laser and optoelectronic devices. First, a desired waveform is generated and the intensity of the laser source is modulated accordingly using an electro-optic modulator (EOM). Next, the modulated laser is wirelessly transmitted to a photodiode connected to a PZT. Then, the photodiode converts the transmitted light into an electric signal and excites the PZT to generate guided waves on the structure where the PZT is attached to. Finally, the corresponding response from the sensing PZT is measured. The feasibility of the proposed method for wireless guided wave generation has been experimentally demonstrated.