• 제목/요약/키워드: Passive Vibration Suppression

검색결과 27건 처리시간 0.022초

다중 션트회로에 연결된 압전세라믹을 이용한 비선형 패널 플러터의 수동적 억제 (Passive Suppression of Nonlinear Panel Flutter Using Piezoceramics with Multi Resonant Circuits)

  • 문성환;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1204-1209
    • /
    • 2000
  • Many analytical and experimental studies on the active suppression of nonlinear panel flutter by using piezoceramic patch have been carried out. However, these active control methods have a few important problems; a large amount of power is required to operate actuators, and additional apparatuses such as sensor systems and controller are needed. In this study passive suppression schemes for nonlinear flutter of composite panel, which is believed to be more robust suppression system than active control in practical operation, are proposed by using piezoelectric inductor-resistor series shunt circuit. Toward the end, a finite element equation of motion for an electromechanically coupled system is proposed using the Hamilton's principle. To achieve the best damping effect, optimal shape and location of the piezoceramic(PZT) patches are determined by using genetic algorithms. The results clearly demonstrate that the passive damping scheme by using piezoelectric shunt circuit can effectively attenuate the flutter.

  • PDF

강화된 Piezoelectric Shunt Circuit에 의한 수동진동제어 연구 (Passive Vibration Suppression With an Enhanced Shunted Piezoelectric Circuit)

  • 김원철;박철휴
    • 동력기계공학회지
    • /
    • 제3권4호
    • /
    • pp.36-44
    • /
    • 1999
  • 회로내에 capacitor를 부가 연결시켜 이론과 실험적으로 고찰한 새로운 기법의 연구이다. 종래에 사용되어 온 전자회로는 낮은 주파수의 진동진폭을 억제할 때에 큰 inductance 값을 필요로 하는 결점이 있었다. 이런 문제점을 해결하기 위하여 본 연구에서는 강화된 압전 분권회로에 병렬로 capacitor를 연결하도록 설계하였다. 새로운 기법은 기계적인 analogy 이론에 의해 증명을 하였으며, 알루미늄 보에 대하여 필요한 동조 모드에서 실험적으로 입증하였다. 따라서 이러한 결과들은 electronic passive damping 에 있어서 예전부터 요구되어 온 절반정도의 inductance값만으로도 구조물의 진동응답을 아주 심도 있게 감소시킬 수 있다는 것을 보여주고 있다.

  • PDF

사장 케이블 제진을 위한 스마트 제진 기법 (Smart Control Techniques for Vibration Suppression of Stay Cable)

  • 정형조;박철민;조상원;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.264-271
    • /
    • 2006
  • Stay cables, such as used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. It has been reported that a semiactive control system using MR dampers could potentially achieve both the better performance compared to a passive control system and the adaptability with few of the detractions. However, a control system including a power supply, a controller and sensors is required to improve the control performance of MR dampers. This complicated control system is not effective to most of large civil structures such as long-span bridges and high-rise buildings. This paper proposes a smart damping system which consists of an MR damper and the electromagnetic induction (EMI) part that is considered as an external power source to the MR damper. The control performance of the proposed damping system has been compared with that of the passive-type control systems employing an MR damper and a linear viscous damper.

  • PDF

회전 물체의 동적 하중에 대한 능동 진동 제어 (Dynamic Load Suppression in Active Vibration Control of Rotating Machinery)

  • 김주형;김상섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1126-1131
    • /
    • 2001
  • Excessive vibration in rotating machinery is a problem encountered in many different fields, causing such difficulties as fatigue of machinery components and failure of supporting bearings. Passive techniques, though sometimes limited in their capabilities, have been used in the past to attenuated vibrations. Recently active techniques have been developed to provide vibration control perform beyond that provided by their passive counters. Most often, the focus of active control methods has been to suppress rotating machinery displacements. In cases where vibration results in bearing failures, displacement suppression may not be the best choice of control approaches (it can, in fact, increase dynamic bearing loads which would be even more harmful to bearings). This paper presents two optimal control methods for attenuating steady state vibrations in rotating machinery. One method minimizes shaft displacements while the other minimizes dynamic bearing reaction forces. The two methods are applied to a model of a typical rotating machinery system and their results are compared. It is found that displacement minimization can increase bearing loads, while bearing load minimization, on the other hand, decreases bearing loads.

  • PDF

Rotational inertial double tuned mass damper for human-induced floor vibration control

  • Wang, Pengcheng;Chen, Jun;Han, Ziping
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.283-294
    • /
    • 2022
  • An inerter is a passive mechanical element whose inertance can be thousands of times its own physical mass. This paper discusses the application of an inerter-based passive control system, termed rotational inertial double-tuned mass damper (RIDTMD), to mitigate human-induced floor vibrations. First, the acceleration frequency response function of the floor with an RIDTMD is first derived. It is then employed to determine the optimal design parameters of the RIDTMD using the extended fixed-points technique. Based on a theoretical analysis, design-oriented empirical functions are proposed for the RIDTMD optimal parameters, whose performance for floor vibration control is evaluated by numerical examples, in which three typical human-induced load types are considered: walking, jumping, and bouncing. The results indicate that the applicability and effectiveness of the RIDTMD for human-induced floor vibration control are robust for various load types, load frequencies, and floor natural frequencies. For the same mass ratio, the RIDTMD is better than the TMD in reducing the floor vibration amplitude and improving the effective frequency suppression bandwidth, and for the same vibration suppression effect, the mass of the RIDTMD is much lighter than that of the TMD.

진동 저감을 위한 복합재료 태양전지판의 최적설계 (Optimal Design of a Composite Solar Panel for Vibration Suppression)

  • 김용하;김휘엽;박정선
    • 항공우주시스템공학회지
    • /
    • 제12권6호
    • /
    • pp.50-57
    • /
    • 2018
  • 본 논문에서는 고기동 위성의 진동 저감을 위해 지지대를 복합재료 태양전지판에 적용하였다. 또한 리츠 법을 이용하여 지지대를 포함한 복합재료 태양전지판의 동역학적 모델을 정의하였으며, 지지대가 포함되지 않은 복합재료 태양전지판과 비교하여 지지대의 진동 흡수 성능을 확인하였다. 제한된 질량 내에서 진동 흡수 성능을 최대화하기 위해 정의된 동역학적 모델을 이용하여 지지대를 포함한 복합재료 태양전지판의 설계변수에 대한 최적설계를 수행하였으며, 최적화된 전개 고정형 복합재료 태양전지판의 설계안을 도출하였다.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

인공위성 반작용휠 미소진동 감쇠기의 성능 측정 (Performance Test of Isolator for Reaction Wheel Micro-Vibration)

  • 오시환;서현호;임조령;이승우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.376-379
    • /
    • 2006
  • Reaction Wheel Assembly (RWA) is one of the major disturbance sources that have influence upon the Line of Sight (LOS) of payload. A micro-vibration induced by RWA is propagated through the satellite structure and decrease the LOS stability performance of payload. This effect shall be analyzed through the jitter analysis. If a requirement or specification of payload jitter level is found to be not satisfied according to the jitter analysis campaign, some modification or redesign should be done on the satellite structure or a couple of isolator should be attached on the RWA interface in order to reduce the transmitted vibration level of RWA. The purpose of ???RWA isolator test? is to roughly evaluate the performance of vibration suppression level with a passive RWA isolator made of rubber. For this test, actual RWA is used as a vibration source and a couple of cube-shaped rubber mount designed for satellite is used as a passive isolator. There may be several considerations in order to accommodate RWA isolator to spacecraft such as not only vibration reduction performance but also thermal conduction problem, mechanical size, RWA alignment problem, etc. But in this report the feasibility of RWA isolator is analyzed only in a vibration suppression point of view. As a result, high frequency vibration of RWA above 50Hz is perfectly attenuated with isolators, however, first harmonic components below 50Hz became larger due to the additional low frequency resonance modes of roll, pitch, yaw rigid body motion of RWA+bracket.

  • PDF

외팔보 형태의 수동형 Multiple Tuned Mass Damper를 이용한 구조물의 진동 억제 (The Suppression of Structural Vibration Using Cantilevers as Multiple Tuned Mass Damper)

  • 박재관;백윤수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.169-176
    • /
    • 1996
  • In order to suppress the structural vibration more effectively, Multiple Tuned Mass Damper(MTMD) which is composed of a number of Tuned Mass Damper(TMD) can be used. Especially, the passive MTMD has several advantages over active TMD like easy installment and maintenance, cost and performance for power failure situation(severe damage of power lines from earthquake), etc.. For this purpose the mass and damping ratio of MTMD and the distributed frequency range which shows the range of MTMD's distribution are used as main design parameters. When the passive MTMD is constituted with multiple cantilevers, the facility in its real production and its need for only a smaller space can be named as its several advantages. In this study, the satisfactory results were obtained from the composition of MTMD utilizing dynamic characters of cantilevers, and the verification was done by the comparison of the analysis from MTMD with the computer simulation.

  • PDF