• 제목/요약/키워드: Passive Vibration Reduction Device

검색결과 13건 처리시간 0.028초

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

와이어 방전가공기용 와이어의 진동 특성과 장력 변동 조절 (Vibration Characteristics and Tension Control of a Wire in WEDM)

  • 채호중;이승엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.629-635
    • /
    • 2000
  • Vibrational characteristics and tension fluctuation of a translating wire in WEDM are the main problems to deteriorate the cutting accuracy and processing performance. In this paper, we analyze natural frequencies of the wire used in WEDM, both theoretically and experimentally. To reduce the tension variation of the wire. which directly affects cutting performance. we have designed a simply tension reduction device using springs and rollers. It is shown that tension fluctuation is reduced about 25% using the passive tension controller.

  • PDF

헬리콥터 능동진동제어시스템의 수리온 적용 및 성능 분석 (Application and Performance Evaluation of Helicopter Active Vibration Control System for Surion)

  • 김도형;김태주;백승길;곽동일;정세운
    • 한국항공우주학회지
    • /
    • 제43권6호
    • /
    • pp.557-567
    • /
    • 2015
  • 헬리콥터 진동의 주요 가진원 중 가장 결정적인 요인은 주로터이며 이러한 로터 유발진동은 승무원과 승객의 안락함을 보장하기 위해 회전익 항공기에서 해결해야할 과제 중 하나이다. 종래의 헬리콥터에서는 수동형 진동저감장치가 주로 사용되어 왔고 수리온 항공기에도 여러 가지 형태의 수동형 진동저감장치가 적용되어 있다. 최근 국외 항공기 제조업체에서는 수동형 진동저감장치 대비 작은 중량으로 우수한 진동저감 성능을 발휘할 수 있는 능동진동제어시스템(AVCS)의 적용을 확대하고 있는 추세이다. AVCS는 중량 절감외에도 항공기 형상, 비행 상태 변화 시에도 만족할만한 성능을 유지할 수 있는 장점이 있다. 이러한 AVCS를 수리온에 적용 시 어느 정도의 성능을 발휘하는지 확인하기 위한 성능시연 프로그램을 수행하였고, 최적의 센서와 작동기 조합을 찾기 위한 최적화 과정을 수행하였다. 지상 및 비행시험을 통해 계측된 데이터를 이용하여 최적의 센서 및 작동기 조합을 도출하고 비행시험 결과와 비교하였다.

Integrated cable vibration control system using Arduino

  • Jeong, Seunghoo;Lee, Junhwa;Cho, Soojin;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.695-702
    • /
    • 2019
  • The number of cable-stayed bridges has been increasing worldwide, causing issues in maintaining the structural safety and integrity of bridges. The stay cable, one of the most critical members in cable-stayed bridges, is vulnerable to wind-induced vibrations owing to its inherent low damping capacity. Thus, vibration mitigation of stay cables has been an important issue both in academia and practice. While a semi-active control scheme shows effective vibration reduction compared to a passive control scheme, real-world applications are quite limited because it requires complicated equipment, including for data acquisition, and power supply. This study aims to develop an Arduino-based integrated cable vibration control system implementing a semi-active control algorithm. The integrated control system is built on the low-cost, low-power Arduino platform, embedding a semi-active control algorithm. A MEMS accelerometer is installed in the platform to conduct a state feedback for the semi-active control. The Linear Quadratic Gaussian control is applied to estimate a cable state and obtain a control gain, and the clipped optimal algorithm is implemented to control the damping device. This study selects the magnetorheological damper as a semi-active damping device, controlled by the proposed control system. The developed integrated system is applied to a laboratory size cable with a series of experimental studies for identifying the effect of the system on cable vibration reduction. The semi-active control embedded in the integrated system is compared with free and passive mode cases and is shown to reduce the vibration of stay-cables effectively.

TMD를 이용한 고속철도교량의 진동감소에 관한 연구 (Vibration Reduction of High-Speed Railway Bridges by Tuned Mass Dampers)

  • 오종환;김연태
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.1261-1267
    • /
    • 2005
  • At this paper Dynamic respones of bridges for the Korean high-speed railway are analyzed by a modal analysis. To control vibration of bridges, Tuned Mass Damper(TMD) that is passive type control device is used. Opimize and prove it. Newmark method is used for a numerical analysis. In case of vehicle is modeled for moving mass that considers the effects of the moving. Also this paper is assumped as the simple supported Bernoulli-Euler beam and considered two dimensional Interaction motion between vehicle and bridge.

  • PDF

The tuned mass-damper-inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting

  • Marian, Laurentiu;Giaralis, Agathoklis
    • Smart Structures and Systems
    • /
    • 제19권6호
    • /
    • pp.665-678
    • /
    • 2017
  • In this paper the tuned mass-damper-inerter (TMDI) is considered for passive vibration control and energy harvesting in harmonically excited structures. The TMDI couples the classical tuned mass-damper (TMD) with a grounded inerter: a two-terminal linear device resisting the relative acceleration of its terminals by a constant of proportionality termed inertance. In this manner, the TMD is endowed with additional inertia, beyond the one offered by the attached mass, without any substantial increase to the overall weight. Closed-form analytical expressions for optimal TMDI parameters, stiffness and damping, given attached mass and inertance are derived by application of Den Hartog's tuning approach to suppress the response amplitude of force and base-acceleration excited single-degree-of-freedom structures. It is analytically shown that the TMDI is more effective from a same mass/weight TMD to suppress vibrations close to the natural frequency of the uncontrolled structure, while it is more robust to detuning effects. Moreover, it is shown that the mass amplification effect of the inerter achieves significant weight reduction for a target/predefined level of vibration suppression in a performance-based oriented design approach compared to the classical TMD. Lastly, the potential of using the TMDI for energy harvesting is explored by substituting the dissipative damper with an electromagnetic motor and assuming that the inertance can vary through the use of a flywheel-based inerter device. It is analytically shown that by reducing the inertance, treated as a mass/inertia-related design parameter not considered in conventional TMD-based energy harvesters, the available power for electric generation increases for fixed attached mass/weight, electromechanical damping, and stiffness properties.

A Study on the Noise Reduction in Railway Vehicles using Bone Conduction Device : Railway noise analysis and Understanding Acoustic Characteristics of Bone Conduction Devices

  • Park, Hyung Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제8권4호
    • /
    • pp.48-53
    • /
    • 2016
  • Noise and vibration pollution is emerging to people in high speed trains. And it is difficult to realization of eco-friendly railway system at noise problem. The railway internal noise is 73dB on average and over 80dB in the loudest section. In order to reduce noise, there are passive methods that are far from noise sources and theother active noise reducion method. In this paper, we propose a method of reduce noise by measure and estimate the noise condition of train environment using Bone-Conduction device. We use an anti-phase waveform for canceling of noise characteristic. With this new system, the noise from surrounding environments can be reduced.

An innovative BRB with viscoelastic layers: performance evaluation and numerical simulation

  • Zhou, Ying;Gong, Shunming;Hu, Qing;Wu, Rili
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.205-229
    • /
    • 2018
  • Energy induced by minor earthquake and micro vibration cannot be dissipated by traditional buckling-restrained braces (BRBs). To solve this problem, a new type of hybrid passive control device, named as VE-BRB, which is configured by a BRB with high-damping viscoelastic (VE) layers, is developed and studied. Theoretical analysis, performance tests, numerical simulation and case analysis are conducted to study the seismic behavior of VE-BRBs. The results indicate that the combination of hysteretic and damping devices lead to a multi-phased nature and good performance. VE-BRB's working state can be divided into three phases: before yielding of the steel core, VE layers provide sufficient damping ratio to mitigate minor vibrations; after yielding of the steel core, the steel's hysteretic deformations provide supplemental dissipative capacity for structures; after rupture of the steel core, VE layers are still able to work normally and provide multiple security assurance for structures. The simulation results agreed well with the experimental results, validating the finite element analysis method, constitutive models and the identified parameters. The comparison of the time history analysis on a 6-story frame with VE-BRBs and BRBs verified the advantages of VE-BRB for seismic protection of structures compared with traditional BRB. In general, VE-BRB had the potential to provide better control effect on structural displacement and shear in all stages than BRB as expected.

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • 제9권1호
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • 제36권5호
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.