• Title/Summary/Keyword: Passive SONAR

Search Result 109, Processing Time 0.032 seconds

Target Motion Analysis for Active/Passive Mixed-Mode Sonar Systems

  • Taek, Lim-Young;Lyul, Song-Taek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.5-172
    • /
    • 2001
  • Target Motion Analysis(TMA) for Passive Sonar Systems with bearing-only measurements needs to enhance system observability to improve target tracking performance by ownship maneuvering. However, tracking problem incurred by weak observaility result in slow convergence of the target estimates. On the other hand, active sonar systems do not have problem associated with system observaility. However, it drawback related to system survivability. In this paper, the algorithm that could be used in Active/passive Mixed-Mode Sonar Systems is proposed to analyze maneuvering target motion and to improve TMA performance. The proposed TMA algorithm is tested by a series of computer simulation runs and the results ...

  • PDF

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Approximation of a Warship Passive Sonar Signal Using Taylor Expansion (테일러 전개를 이용한 함정 수동 소나 신호 근사)

  • Hong, Wooyoung;Jung, Youngcheol;Lim, Jun-Seok;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.232-237
    • /
    • 2014
  • A passive sonar of warship is composed of several directional or omni-directional sensors. In order to model the acoustic signal received into a warship sonar, the wave propagation modeling is usually required from arbitrary noise source to all sensors equipped to the sonar. However, the full calculation for all sensors is time-consuming and the performance of sonar simulator deteriorates. In this study, we suggest an asymptotic method to estimate the sonar signal arrived to sensors adjacent to the reference sensor, where it is assumed that all information of eigenrays is known. This method is developed using Taylor series for the time delay of eigenray and similar to Fraunhofer and Fresnel approximation for sonar aperture. To validate the proposed method, some numerical experiments are performed for the passive sonar. The approximation when the second-order term is kept is vastly superior. In addition, the error criterion for each approximation is provided with a practical example.

Study on Bearing and Frequency Target Motion Analysis for Passive Line Array SONAR Using Accumulative Batch Estimation (누적 일괄추정 기법을 이용한 수동 선배열 소나 방위 주파수 - 표적기동분석 연구)

  • Kim, In-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.788-796
    • /
    • 2016
  • Bearing and frequency measurements of TMA (Target Motion Analysis) in passive line array SONAR have lower bearing rate and frequency doppler, and are not detected or tracked continuously because of various ocean environments. This is a main reason to effect the TMA performance and it takes a long time to get TMA solutions. We propose the bearing and frequency TMA(BFTMA) using accumulative batch estimation to solve the TMA problem of line array passive SONAR. The accumulative batch estimation structure is based on MLE (Maximum Likelihood Estimation) but used accumulative measurements. The accumulative batch estimation is applied for the BFTMA with nonlinear Kalman filter to estimate the target range, speed and course. Simulation and sea data analysis were carried out to verify the performance and applicability of the proposed techniques.

Performance Analysis of a Criterion to Verify the Consistency of Measured Angles of Towed Array and Frank Array (예인 선 배열 소나와 선측 배열 소나의 방위각 측정값의 일관성 판별기법의 성능분석)

  • Park, Hyun-Woo;Jung, Tae-Jin;Kwon, Bum-Soo;Lee, Kyun-Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.188-195
    • /
    • 2010
  • Unlike using a single sonar platform, using two different sonar platforms can lead to a considerable increase of acoustic aperture in Passive Ranging Sonar(PRS). Values measured from two sonar platforms shall be consistent in order to allow us to rely on such improved aperture. However, obtaining consistent values from a towed array and a frank array is not always simple due to the heading error occurring at towed array. The objective of this paper is to verify a new criterion analyzing the consistency in the measured values of towed array and frank array through computer simulations.

Interference Pattern Analysis of the Radiated Noise in Submarine Passive Sonar (잠수함 수동소나에서 방사소음의 간섭패턴 분석)

  • Kim, ByoungUk;An, SangKyum;Lee, Kuenhwa;Seong, WooJae;Hahn, JooYoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.456-464
    • /
    • 2013
  • Passive sonar in submarine can detect the target in long range and can attack using it. There are many noises which can be received at passive sonar of submarine. When noise received in the sonar it make diverse interference pattern depend on the ocean ambient and movement scenario. Interference pattern can be explained by theory of waveguide invariant. In this paper, analyze the interference pattern according to the relative motions of surface ship and submarine. And analyze the occurrence reason of 2 kinds of interference patterns those are usually display on the submarine console. The results show that if relative speed of submarine and target increase then gradient of interference pattern will increase. And closest point approach of submarine and target decrease then gradient of interference pattern will increase. Bathtube pattern usually appear when target pass though close to submarine and Pinetree pattern appear target pass though above of submarine.

Performance Analysis of Omni-Directional Automatic Target Detection and Tracking for a Towed Array Passive Sonar System (예인형 수동소나에 적합한 전방위 표적 자동탐지 및 추적기법 성능 분석)

  • Seo, Ik-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.33-40
    • /
    • 2006
  • In towed array passive sonar system, sonar operators cannot detect and track the all targets simultaneously in the omni-directional area by just Operator Initiated Tracking(OIT). In this paper, omni-directional automatic target detection and tracking algorithm is described and optimize the parameters through ocean data to overcome the drawbacks of OITs. The algorithm is verified through sea trials with submarines.

Measure of Effectiveness Analysis of Passive SONAR System for Detection (수동소나시스템에서 탐지효과도 분석)

  • Cho, Jung-Hong;Kim, Jea-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.272-287
    • /
    • 2012
  • The optimal use of sonar systems for detection is a practical problem in a given ocean environment. In order to quantify the mission achievability in general, measure of effectiveness(MOE) is defined for specific missions. In this paper, using the specific MOE for detection, which is represented as cumulative detection probability(CDP), an integrated software package named as Optimal Acoustic Search Path Planning(OASPP) is developed. For a given ocean environment and sonar systems, the discrete observations for detection probability(PD) are used to calculate CDP incorporating sonar and environmental parameters. Also, counter-detection probability is considered for vulnerability analysis for a given scenario. Through modeling and simulation for a simple case for which an intuitive solution is known, the developed code is verified.

Target Range Estimation Method using Ghost Target in the Submarine Linear Array Sonar (잠수함 선배열소나의 허위표적 정보를 이용한 표적의 거리추정 기법)

  • Choi, Byungwoong;Kim, Kyubaek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.532-537
    • /
    • 2015
  • In this paper, we propose target range estimation method using ghost target in the submarine linear array sonar. Usually, when submarine detect target, they use passive sonar detection to avoid self-disclosure by active sonar transmission. But, originally, passive linear array sonar have limitation for target range estimation and additional processing is required to get target range information. For the case of near-field target, typical range estimation method is using multiple information by multipath effect in underwater environment. Acoustic signal generated from target are propagated along with numerous multipath in underwater environment. Since multipath target signals received in the linear array sonar have different conic angles each other, ghost target is appeared at the bearing different with real target bearing and sonar operator can find these information on the operation console. Under several assumption, this geometric properties can be analysed mathematically and we get the target range by derivation of this geometric equations using measured conic angles of real target and ghost target.

A Study on the Algorithm for Underwater Target Automatic Classification using the Passive Sonar (수동소나를 이용한 수중물체 자동판별기법 연구)

  • 이성은;최수복;노도영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • As first step of any acoustic defence system, a attacking target warning system needs to be extremely reliable. This means the system must ensure a high probability of target classification together with a very low false alarm rate. In this paper, a algorithms for underwater target automatic classification is available for use in the passive sonar will be presented. In first, we will describe the precise automatic extraction of frequency lines for the detection of acoustic signatures. Also, a neural network and fuzzy based algorithms for target classification will be described. Thus the performances of these algorithms are very good with a high probability of classification.

  • PDF