• 제목/요약/키워드: Passivation Film

검색결과 304건 처리시간 0.026초

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.

OLED 내구성에 미치는 무기/에폭시층 보호막의 영향 (The Effect of Passivation Film with Inorganic/Epoxy Layers on Life Time Characteristics of OLED Device)

  • 임정아;주성후;양재웅
    • 한국표면공학회지
    • /
    • 제42권6호
    • /
    • pp.287-293
    • /
    • 2009
  • The passivation films with epoxy layer on LiF, $SiN_x$ and LiF/$SiN_x$ inorganic layer were fabricated on OLED to protect device from the direct damage of $O_2$ and $H_2O$ and to apply for a buffer layer between OLED device and passivation multi-layer with organic/inorganic hybrid structure as to diminish the thermal stress and expansion. Red OLED doped with 1 vol.% Rubrene in $Alq_3$ was used as a basic device. The device structure was multi-layer of ITO(150 nm) / ELM200_HIL(50 nm) / ELM002_HTL(30 nm) / $Alq_3$: 1 vol.% Rubrene(30 nm) / $Alq_3$(30 nm) / LiF(0.7 nm) / Al(100 nm). LiF/epoxy applied as a protective layer didn't contribute to the improvement of life time. While in case of $SiN_x$/epoxy, damage was done in the passivation process because of difference in heat expansion between films which could occur during the formation of epoxy film. Using LiF/$SiN_x$/epoxy improved lifetime significantly without suffering damage in the process of forming films, therefore, the best structure of passivation film with inorganic/epoxy layers was LiF/$SiN_x$/E1.

박막트랜지스터 응용을 위한 SiO2 박막 특성 연구 (Studies for Improvement in SiO2 Film Property for Thin Film Transistor)

  • 서창기;심명석;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제17권6호
    • /
    • pp.580-585
    • /
    • 2004
  • Silicon dioxide (SiO$_2$) is widely used as a gate dielectric material for thin film transistors (TFT) and semiconductor devices. In this paper, SiO$_2$ films were grown by APCVD(Atmospheric Pressure chemical vapor deposition) at the high temperature. Experimental investigations were carried out as a function of $O_2$ gas flow ratios from 0 to 200 1pm. This article presents the SiO$_2$ gate dielectric studies in terms of deposition rate, refrative index, FT-IR, C-V for the gate dielectric layer of thin film transistor applications. We also study defect passivation technique for improvement interface or surface properties in thin films. Our passivation technique is Forming Gas Annealing treatment. FGA acts passivation of interface and surface impurity or defects in SiO$_2$ film. We used RTP system for FGA and gained results that reduced surface fixed charge and trap density of midgap value.

Enhancement of PLED lifetime using thin film passivation with amorphous Mg-Zn-F

  • Kang, Byoung-Ho;Kim, Do-Eok;Kim, Jae-Hyun;Seo, Jun-Seon;Kim, Hak-Rin;Lee, Hyeong-Rag;Kwon, Dae-Hyuk;Kang, Shin-Won
    • Journal of Information Display
    • /
    • 제11권1호
    • /
    • pp.8-11
    • /
    • 2010
  • In this study, a new thin films passivation technique using Zn with high electronegativity and $MgF_2$, a fluorine material with better optical transmittance than the sealing film materials that have thus far been reported was proposed. Targets with various ratios of $MgF_2$ to Zn (5:5, 4:6 and 3:7) were fabricated to control the amount of Zn in the passivation films. The Mg-Zn-F films were deposited onto the substrates and Zn was located in the gap between the lattices of $MgF_2$ without chemical metathesis in the Mg-Zn-F films. The thickness and optical transmittance of the deposited passivation films were approximately 200 nm and 80%, respectively. It was confirmed via electron dispersive spectroscopy (EDS) analysis that the Zn content of the film that was sputtered using a 4:6 ratio target was 9.84 wt%. The Zn contents of the films made from the 5:5 and 3:7 ratio targets were 2.07 and 5.01 wt%, respectively. The water vapor transmission rate (WVTR) was determined to be $38^{\circ}C$, RH 90-100%. The WVTR of the Mg-Zn-F film that was deposited with a 4:6 ratio target nearly reached the limit of the equipment, $1\times10^{-3}\;gm^2{\cdot}day$. As the Zn portion increased, the packing density also increased, and it was found that the passivation films effectively prevented the permeation by either oxygen or water vapor. To measure the characteristics of gas barrier, the film was applied to the emitting device to evaluate their lifetime. The lifetime of the applied device with passivation was increased to 25 times that of the PLED device, which was non-passivated.

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Passivation of organic light emitting diodes with $Al_2O_3/Ag/Al_2O_3$ multilayer thin films grown by twin target sputtering system

  • Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.420-423
    • /
    • 2008
  • The characteristics of $Al_2O_3/Ag/Al_2O_3$ multilayer passivaton prepared by twin target sputtering (TTS) system for organic light emitting diodes. The $Al_2O_3/Ag/Al_2O_3$ multilayer thin film passivation on a PET substrate had a high transmittance of 86.44 % and low water vapor transmission rate (WVTR) of $0.011\;g/m^2$-day due to the surface plasmon resonance (SPR) effect of Ag interlayer and effective multilayer structure for preventing the intrusion of water vapor. Using synchrotron x-ray scattering and field emission scanning electron microscope (FESEM) examinations, we investigated the growth behavior of Ag layer on the $Al_2O_3$ layer to explain the SPR effect of the Ag layer. This indicates that an $Al_2O_3/Ag/Al_2O_3$ multilayer passivation is a promising thin film passivation scheme for organic based flexible optoelectronics.

  • PDF

전면발광 유기광소자용 박막 봉지를 위한 유도결합형 화학 기상 증착 장치 (Inductively Coupled Plasma Chemical Vapor Deposition System for Thin Film Ppassivation of Top Emitting Organic Light Emitting Diodes)

  • 김한기
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.538-546
    • /
    • 2006
  • We report on characteristics of specially designed inductively-coupled-plasma chemical vapor deposition (ICP-CVD) system for top-emitting organic light emitting diodes (TOLEDs). Using high-density plasma on the order of $10^{11}$ electrons/$cm^3$ generated by linear-type antennas connected in parallel and specially designed substrate cooling system, a 100 nm-thick transparent $SiN_{x}$ passivation layer was deposited on thin Mg-Ag cathode layer at substrate temperature below $50\;^{\circ}C$ without a noticeable plasma damage. In addition, substrate-mask chucking system equipped with a mechanical mask aligner enabled us to pattern the $SiN_x$ passivation layer without conventional lithography processes. Even at low substrate temperature, a $SiN_x$ passivation layer prepared by ICP-CVD shows a good moisture resistance and transparency of $5{\times}10^{-3}g/m^2/day$ and 92 %, respectively. This indicates that the ICP-CVD system is a promising methode to substitute conventional plasma enhanced CVD (PECVD) in thin film passivation process.

폴리이미드 패시베이션과 폴리비닐알콜 패시베이션 레이어 성막이 고성능 유기박막 트렌지스터에 주는 영향 (Effects of Polyimide Passivation Layers and polyvinylalcohol Passivation Layers for Organic Thin-Film Transistors(OTFTs))

  • 박일흥;형건우;최학범;황선욱;김영관
    • 한국진공학회지
    • /
    • 제17권3호
    • /
    • pp.195-198
    • /
    • 2008
  • 이 논문에서 무기 게이트 인슐레이터 위에 Polyimide 유기 점착층을 성형하여, 고성능의 유기 박막 트렌지스터(OTFT)소자를 제작한 후 450 nm 두께로 폴리이미드를 Vapor deposition polymerization (VDP)방법을 사용하여 패시베이션하였다. 이때 폴리이미드성막을 위해, 스핀코팅 방법 대신 VDP 방법 도입하였다. 이 폴리이미드 고분자막은 2,2 bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA)와 4,4‘-oxydianiline(ODA)을 고진공에서 동시에 열증착 시킨 후, $170^{\circ}C$에서 2시간 열처리하여 고분자화 된 막을 형성하였다. 다른 종류의 유기 패시베이션 막이 소자에 주는 영향을 비교 분석하기 위해, 450 nm 두께로 스핀코팅법을 이용하여 폴리비닐알콜 패시베이션 막을 형성하였다. 이 두 가지 패시베이션 막 형성법이 소자의 문턱전압과, 전하이동도에 주는 영향을 전기적 특성을 통해 변화를 확실히 볼 수 있었다. 최초 유기 박막 트렌지스터의 전기적 특성은 문턱전압, 점멸비, 그리고 정공의 이동도는 각각, -3 V, 약 $10^6$ 그리고, $0.24cm^2$/Vs 이 측정되었고. 폴리이미드를 사용하여 패시베이션 후 특성이 각각 0 V, 약 $10^6$ 그리고, $0.26cm^2/Vs$, 폴리비닐알콜 패시베이션 경우는 특성이 각각, 문턱전압의 경우 0 V에서 +2 V로, 점멸비는 $10^6$에서 $10^5$으로 전계효과이동도는 $0.13cm^2/Vs$ 에서 $0.13cm^2/Vs$로 변화하였다.

Passive Film on Cobalt: A Three-Parameter Ellipsometry Study During the Film Formation

  • Woon-Kie Paik;Seunghyun Koh
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.540-544
    • /
    • 1991
  • Thin film being formed on the surface of cobalt in the early stage of electrochemically induced passivation was studied by the three-parameter ellipsometry. The growth of the passive film was complete in a few seconds from the onset of the passivating potential, and was followed by a slight decrease in the thickness in 4-40 seconds. The optical constants of the passive film changed gradually during the changes in the thickness. The thickness and the optical properties at the steady state of passivation depended on the potential of the electrode. From the coulometric data and the optical properties, the composition of the passive films was deduced to be close to those of CoO, ${Co_3}{O_4}$ and ${Co_2}{O_3}$ depending on the potential. Cathodic reduction in the presence of EDTA was found to be an efficient way to obtain film-free reference surface of cobalt.

A1-1%Si 박막배선에서 엘렉트로마이그레이션 현상에 미치는 절연보호막 효과 (Dielectric passivation effects on the electromigration phenomena in Al-1%Si thin film interconnections)

  • 김경수;김진영
    • 한국진공학회지
    • /
    • 제10권1호
    • /
    • pp.27-30
    • /
    • 2001
  • 절연보호막 처리된 Al-1%Si 박막배선에서 DC와 PDC 조건하에서의 Electromigration 현상에 관하여 조사하였다. $SiO_2$와 PSG/$SiO_2$ 절연보호막 층을 갖는 박막배선은 표준 사진식각 공정으로 제작되었고, 테스트라인 길이는 100, 400, 800, 1200, 1600 $\mu\textrm{m}$이다. Al-l%Si 박막배선에 고정된 전류밀도 $1.19\times10^7\textrm{A/cm}^2$의 DC와 duty factor가 0.5인 1Hz의 주파수에 고정된 전류밀도 $1.19\times10^7\textrm{A/cm}^2$의 PDC를 인가하였다. Electromigration 테스트에서 PSG/$SiO_2$ 절연보호막 시편의 Electromigration 저항성이 $SiO_2$ 절연보호막 시편보다 우수함을 알 수 있었다. PDC 에서 박막 배선의 수명이 DC 보다 2-4배 정도 길게 나타났으며, 박막 배선의 길이가 증가 할 수록 수명이 감소하다가 임계길이 이상에서 포화되는 경향을 보인다. Electromigration에 의한 결함 형태로는 전기적 개방을 야기시키는 보이드와 전기적 단락을 야기시키는 힐록이 지배적이다.

  • PDF