• Title, Summary, Keyword: Passivation

Search Result 811, Processing Time 0.035 seconds

Photolithographic patterning and passivation of P3HT organic thin film transistors with photo-sensitive polyvinylalcohol(PVA) layers (감광성 PVA 박막을 이용한 P3HT 유기박막트랜지스터의 포토리소그래피 패터닝과 패시베이션)

  • Nam, Dong-Hyun;Han, Kyo-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.191-191
    • /
    • 2007
  • By employing a photo-sensitive PVA as a photoresist, we first demonstrated simultaneous patterning and passivation of P3HT active layer. The passivation layers were obtained by annealing the organic layers after developing PVA and over-etching the P3HT layer. The fabricated OTFTs were electrically characterized. The OTFTs after the passivation exhibited the field-effect of ${\sim}5.9{\times}10^{-4}cm^2/V{\cdot}s$, on/off current ratio of ${\sim}10^3$. The value of OTFTs a little degradation with time in air but it appeared different unpassivated OTFT.

  • PDF

Local-Back Contact Solar Cell adapted Laser ablation on ONO structure passivation layer

  • Gong, Dae-Yeong;Yu, Gyeong-Yeol;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.325-325
    • /
    • 2010
  • 최근 결정질 실리콘 태양전지 분야에서는 태양전지의 Voc와 Isc의 증가를 통한 효율 향상을 목적으로 후면 passivation에 대한 연구가 활발하게 진행되고 있다. Local-Back Contact은 최적화된 후면 passivation 박막을 이용한 태양전지 제조방법이다. 고효율 태양전지 개발을 위해 최적의 laser 가공 조건이 확립되어야 한다. 본 연구에서는 고효율의 LBC 태양전지 개발을 위해 ONO 구조의 후면 passivation 박막에 laser ablation 조건을 가변하여 LBC 태양전지를 제작하고 그 특성을 분석하였다. 본 연구에 사용된 laser는 355nm 파장을 갖는 UV laser를 사용하였다. laser 파워는 5W, 주파수는 30kHz로 하였을 때 폭 20um, 깊이 5um의 홀을 형성시킬 수 있었다. 후면 접촉 면적의 영향을 확인하기 위하여 laser ablation 간격을 300um, 500um, 700um으로 가변하여 공정을 진행하였다. 태양전지 제조 결과 spacing 300um일 경우 효율이 높게 측정되었으며, laser ablation의 데미지를 줄이기 위한 FGA 처리시 웨이퍼 표면의 데미지를 줄여 carrier lifetime 향상에 기여하는 것을 확인할 수 있었다. 본 연구의 결과를 이용하여 향후 후면 passivation 극대화 및 접촉면적 가변을 통한 고효율 LBC 태양전지 개발이 가능할 것으로 판단된다.

  • PDF

Effect of Chemical Passivation Treatment and Flow on the Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution

  • Zhao, Jie;Cheng, Cong Qian;Cao, Tie Shan
    • Corrosion Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.273-279
    • /
    • 2015
  • Effects of passive film quality by chemical passivation and solution flow on the corrosion behavior of 304 stainless steel in HCl solution were investigated using a coloration indicator, and by corrosion weight loss, electrochemical polarization and element dissolution measurements. A high redness degree suggests a low passive-film integrity for 304 stainless steel following air exposure, while the minimum redness degree for the samples after chemical passivation suggests a high passive-film integrity. In the static condition, samples subjected to air exposure exhibited a high corrosion rate and preferential dissolution of Fe. Chemical passivation inhibited the corrosion rate due to the intrinsically high structural integrity of the passive film and high concentrations of Cr-rich oxides and hydroxide. Solution flow accelerated corrosion by promoting both the anodic dissolution reaction and the cathodic reaction. Solution flow also altered the preferential dissolution to fast uniform dissolution of metal elements.

Surface Passivation Method for GaN UV Photodetectors Using Oxygen Annealing Treatment

  • Lee, Chang-Ju;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.252-256
    • /
    • 2016
  • Epitaxially grown GaN layers have a high surface state density, which typically results in a surface leakage current and a photoresponse in undesirable wavelengths in GaN optoelectronic devices. Surface passivation is, therefore, an important process necessary to prevent performance degradation of GaN UV photodetectors. In this study, we propose oxygen-enhanced thermal treatment as a simple surface passivation process without capping layers. The GaN UV photodetector fabricated using a thermal annealing process exhibits improved electrical and photoresponsive characteristics such as a reduced dark current and an enhanced photoresponsive current and UV-to-visible rejection ratio. The results of this study show that the proposed surface passivation method would be useful to enhance the reliability of GaN-based optoelectronic devices.

Passivation Properties of SiNx Thin Film for OLEO Device (SiNx 박막에 의한 OLED 소자의 보호막 특성)

  • Ju Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.758-763
    • /
    • 2006
  • We has been studied the thin film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation properties of the passivation layer materials, we have carried out the fabrication of green light emitting diodes with ultra violet(UV) light absorbing polymer resin, $SiO_2,\;and\;SiN_x$, respectively. From the measurement results of shrinkage properties according to the exposure time to the atmosphere, we found that $SiN_x$ thin film is the best material for passivation layer. We have investigated the emission efficiency and life time of OLED device using the package structure of $OLED/SiN_x/polymer$ resin/Al/polymer resin. The emission efficiency of this OLED device was 13 lm/W and life time was about 2,000 hours, which reach 95 % of the performance for the OLED encapsulated with metal.

Electrical and Optical Properties of Top Emission OLEDs with CsCl Passivation Layer (CsCl 보호막을 이용한 전면발광 OLED의 전기 및 광학적 특성)

  • Kim, So-Youn;Moon, Dae-Gyu;Han, Jeong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.173-177
    • /
    • 2008
  • We have developed the transparent passivation layer for top emission organic light emitting diodes using CsCl thin film by the thermal evaporation method. The CsCl film was deposited on the Ca/Ag semitransparent cathode. The optical transmittance of Ca/ Ag/CsCl triple layer is higher than that of Ca/Ag double layer in the visible range. The device with a structure of glass/Ni/2-TNATA/a-NPD/Alq3:C545T/BCP/Alq3/Ca/Ag/CsCl results in higher efficiency than the device without CsCl passivation layer. The device without CsCl thin film shows a current efficiency of 7 cd/A, whereas the device passivated with CsCl layer shows an efficiency of 10 cd/A. This increase of efficiency isresulted from the increased optical extraction by the CsCl passivation layer.

Simultaneous Patterning and Passivation of P3HT-OTFTs with Photosensitive Poly Vinyl-alcohol(PVA) Layer (감광성 PVA 박막을 이용한 P3HT 유기박막트랜지스터의 패턴 형성과 패시베이션)

  • Nam, Dong-Hyun;Park, Kyeong-Dong;Park, Jeong-Hwan;Han, Kyo-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.426-433
    • /
    • 2008
  • We first demonstrated simultaneous patterning and passivation of P3HT active layer with photosensitive PVA. The passivation layers were obtained by annealing the organic layers after developing PVA and subsequent over-etching the P3HT layer. The fabricated OTFTs were electrically characterized. The OTFTs exhibited the mobility of ${\sim}5.9{\times}10^{-4}\;cm^2/V{\cdot}s$ and on/off current ratio of ${\sim}10^4$. After passivation, the results showed the extended lifetime of ${\sim}250$ hours with photosensitive PVA layer.

Effects of Co-solvent on Passivation Film of Lithium Surface (리튬 표면의 부동태 피막에 미치는 공용매의 영향)

  • Kang, Jihoon;Jeong, Soonki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.305-310
    • /
    • 2014
  • This study examined the morphological changes in lithium surface immersed in 1mol $dm^{-3}$ (M) $LiPF_6 $ dissolved in propylene carbonate (PC) containing different 1,2-dimethoxyethane (DME) concentrations as a co-solvent. A passivation film was formed on the surface of lithium metal by electrolyte decomposition. The passivation film formation reactions were significantly affected by the amount of co-solvent, DME, in electrolyte solution. A stable film was obtained from the 1 M $LiPF_6 $ / PC:DME (67:33) solution in which lithium electrode showed good electrochemical performances. Atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) results revealed that there were no direct correlations between changes in the surface morphology of lithium metal and the resistance behavior of its passivation film.

Fabrication of Organic Thin Film for Flexible OLED Passivation and Its Characterization (플렉시블 OLED 패시베이션용 유기 박막 제작 및 특성)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.93-96
    • /
    • 2020
  • Polyimide thin film was prepared by annealing the polyamic acid that was synthesized through co-deposition of diamine and dianhydride. The polyamic acid and polyimide thin film were characterized with FT-IR and HR FE-SEM. The average roughness of the film surface, evaluated with AFM, were 0.385 nm and 0.299 nm after co-deposition, and annealing at 120 ℃ respectively. OLED was passivated with the polyimide layer of 200 nm thickness. While the inorganic passivation layer enhances the WVTR of OLED, the organic passivation layer gives flexibility to the OLED. The in-situ passivation of OLED with organic thin film layer provides the leading technique to develop flexible OLED Display.

  • PDF

A SiGe HBT of Current Gain Modulation By using Passivation Ledge (Passivation Ledge를 이용한 SiGe HBT의 Current Gain Modulation)

  • You, Byoung-Sung;Cho, Hee-Yup;Ku, Youn-Seo;Ahn, Chul
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.771-774
    • /
    • 2003
  • Passivation Ledge's device is taken possession on one-side to the Emitter in this Paper. contact used in this paper Pt as Passivation Ledge of device to use Schottky Diode which has leitmotif, It is accomplished Current Modulation that we wish to do purpose using this device. Space Charge acts as single device which is becoming Passivation to know this phenomenon. This device becomes floating as well as Punched-through. V$_{L}$ (Voltage for Ledge) = - 0.5V ~ 0.5V variable values , PD(Partially Depleted ; Λ>0), as seeing FD(Fully Depleted ; A = 0) maximum electric current gains and Gummel Plot of I-V characteristics (V$_{L}$ = 0.1/ V$_{L}$ = -0.1 ). Becomming Degradation under more than V$_{L}$ = 0.1 , less than V$_{L}$ =-0.05 and Maximum Gain(=98.617076 A/A) value in the condition V$_{L}$ = 0.1. A Change of Modulation is electric current gains by using Schottky Diode and Extrinsic Base PN Diode of Passivation Ledge to Emitter Depletion Layer in HBT of Gummel-Poon I-V characteristics and the RF wide-band electric current gains change the Modulation of CE(Common-Emitter) amplifier description, and it had accomplished Current Gain Modulation by Ledge Bias that change in high frequency and wide bands. wide bands.s.

  • PDF