• Title/Summary/Keyword: Passenger vehicle

Search Result 846, Processing Time 0.024 seconds

The Study of Driving Fatigue using HRV Analysis (HRV 분석을 이용한 운전피로도에 관한 연구)

  • 성홍모;차동익;김선웅;박세진;김철중;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The job of long distance driving is likely to be fatiguing and requires long period alertness and attention, which make considerable demands of the driver. Driving fatigue contributes to driver related with accidents and fatalities. In this study, we investigated the relationship between the number of hours of driving and driving fatigue using heart rate variability(HRV) signal. With a more traditional measure of overall variability (standard deviation, mean, spectral values of heart rate). Nonlinear characteristics of HRV signal were analyzed using Approximate Entropy (ApEn) and Poincare plot. Five subjects drive the four passenger vehicle twice. All experiment number was 40. The test route was about 300Km continuous long highway circuit and driving time was about 3 hours. During the driving, measures of electrocardiogram(ECG) were performed at intervals of 30min. HRV signal, derived from the ECG, was analyzed using time, frequency domain parameters and nonlinear characteristic. The significance of differences on the response to driving fatigue was determined by Student's t-test. Differences were considered significant when a p value < 0.05 was observed. In the results, mean heart rate(HRmean) decreased consistently with driving time, standard deviation of RR intervals(SDRR), standard deviation of the successive difference of the RR intervals(SDSD) increased until 90min. Hereafter, they were almost unchanging until the end of the test. Normalized low frequency component $(LF_{norm})$, ratio of low to high frequency component (LF/HF) increased. We used the Approximate Entropy(ApEn), Poincare plot method to describe the nonlinear characteristics of HRV signal. Nonlinear characteristics of HRV signals decreased with driving time. Statistical significant is appeared after 60 min in all parameters.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Development of Friction Loss Measurement Device at Low Speed of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저속 영역 마찰 손실 측정 장치 개발)

  • Chung, Jin Eun;Lee, Sang Woon;Jeon, Se Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.585-591
    • /
    • 2017
  • Turbocharging is widely used in diesel and gasoline engines as an effective way to reduce fuel consumption. But turbochargers have turbo-lag due to mechanical friction losses. Bearing friction losses are a major cause of mechanical friction losses and are particularly intensified in the lower speed range of the engine. Current turbochargers mostly use oil bearings (two journal bearings and one thrust bearing). In this study, we focus on the bearing friction in the lower speed range. Experimental equipment was made using a drive motor, load cell, magnetic coupling, and oil control system. We measured the friction losses of the turbocharger while considering the influence of the rotation speed, oil temperature, and pressure. The friction power losses increased exponentially when the turbocharger speed increased.

Analysis of Riding Quality Acceptability and Characteristics of Expressway Users and Evaluation of MRI Thresholds using Receiver Operating Characteristic curves (고속도로 이용자의 승차감 평가특성 및 만족도 분석과 ROC 곡선을 이용한 평탄성 관리기준 적정성 검토)

  • Lee, Jaehoon;Sohn, Ducksu;Ryu, SungWoo;Kim, Youngwon;Park, Junyoung
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.35-44
    • /
    • 2018
  • PURPOSES : The purpose of this research is to analyze the characteristics of panels that affect the evaluating results of riding quality and to evaluate the appropriateness of roughness management criteria based on ride comfort satisfaction. METHODS : In order to analyze the influence of panel characteristics of riding quality, 33 panels, consisting of civilians and experts, were selected. Also, considering the roughness distribution of the expressway, 35 sections with MRI ranging from 1.17 m/km to 4.65 m/km were selected. Each panel boarded a passenger car and evaluated the riding quality with grades from 0 to 10, and assessed whether it was satisfied or not. After removing outlier results using a box plot technique, 964 results were analyzed. An ANOVA was conducted to evaluate the effects of panel expertise, age, driving experience, vehicle ownership, and gender on the evaluation results. In addition, by using the receiver operating characteristics (ROC) curve, the MRI value, which can most accurately evaluate the satisfaction with riding quality, was derived. Then, the compatibility of MRI was evaluated using AUC as a criterion to assess whether the riding quality was satisfactory. RESULTS : Only the age of the panel participants were found to have an effect on the riding quality satisfaction. It was found that satisfaction with riding quality and MRI are strongly correlated. The satisfaction rate of roughness management criteria on new (MRI 1.6 m/km) and maintenance (MRI 3.0 m/km) expressways were 95% and 53%, respectively. As a result of evaluating the roughness management criteria by using the ROC curve, it was found that the accuracy of satisfaction was the highest at MRI 3.1-3.2 m/km. In addition, the AUC of the MRI was about 0.8, indicating that the MRI was an appropriate index for evaluating the riding quality satisfaction. CONCLUSIONS : Based on the results, the distribution of the panels' age should be considered when panel rating is conducted. From the results of the ROC curve, MRI of 3.0 m/km, which is a criterion of roughness management on maintenance expressways, is considered as appropriate.

Analysis on the Driving Safety and Investment Effect using Severity Model of Fatal Traffic Accidents (대형교통사고 심각도 모형에 의한 주행안전성 및 투자효과 분석)

  • Lim, Chang-Sik;Choi, Yang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.103-114
    • /
    • 2011
  • In this study, we discuss a fatal accident severity model obtained from the analysis of 112 crash sites collected since 2000, and the resulting relationship between fatal accidents and roadway geometry design. From the 720 times computer simulations for improving driving safety, we then reached the following conclusions:. First, the result of cross and frequency-analyses on the car accident sites showed that 43.7% of the accidents occurred on the curved roads, 60.7% on the vertical curve section, 57.2% on the roadways with radius of curvature of 0 to 24m, 83.9% on the roads with superelevation of 0.1 to 2.0% and 49.1% on the one-way 2-lane roads; vehicle types involved are passenger vehicles (33.0%), trucks (20.5%) and buses (14.3%) in order of frequency. The results also show that the superelevation is the most influencing factor for the fatal accidents. Second, employing the Ordered Probit Model (OPM), we developed a severity model for fatal accidents being a function of on various road conditions so as to the damages can be predicted. The proposed model possibly assists the practitioners to predict dangerous roadway segments, and to take appropriate measures in advance. Third, computer simulation runs show that providing adequate superelevation on the segment where a fatal accident occurred could reduce similar fatal accidents by at least 85%. This result indicates that the regulations specified in the Rule for Road Structure and Facility Standard (description and guidelines) should be enhanced to include more specific requirement for providing the superelevation.

Numerical Study on the Performance Assessment for Defrost and De-Icing Modes (승용차의 제상 및 성에 제거 성능 평가를 위한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • The heating, ventilating, air conditioning (HVAC) system is a very important part of an automotive vehicle: it controls the microclimate inside the passenger's compartment and removes the frost or mist that is produced in cold/rainy weather. In this study, the numerical analysis of the defrost duct in an HVAC system and the de-icing pattern is carried out using commercial CFX-code. The mass flow distribution and flow structure at the outlet of the defrost duct satisfied the duct design specification. For analyzing the de-icing pattern, additional grid generation of solid domain of ice and glass is pre-defined for conductive heat transfer. The flow structure near the windshield, streakline, and temperature fields clearly indicate that the de-icing capacity of the given defrost duct configuration is excellent and that it can be operated in a stable manner. In this paper, the unsteady changes in temperature, water volume fraction, and static enthalpy at four monitoring points are discussed.

Aerodynamic Characteristics of a Tube Train (튜브 트레인 공력특성 해석)

  • Kim, Tae-Kyung;Kim, Kyu-Hong;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.139-150
    • /
    • 2010
  • Recently, full-scale research about a passenger tube train system is being progressed as a next-generation transportation system in Korea in light of global green technology. The Korea Railroad Research Institute (KRRI) has commenced official research on the construction of a tube train system. In this paper, we studied various parameters of the tube train system such as the internal tube pressure, blockage ratio, and operating speed through computational analysis with a symmetric and elongated vehicle. This study was about the aerodynamic characteristics of a tube train that operated under standard atmospheric pressure (open field system, viz., ground) and in various internal tube environments (varying internal tube pressure, blockage ratio, and operating speed) with the same shape and operating speed. Under these conditions, the internal tube pressure was calculated when the energy efficiency had the same value as that of the open field train depending on various combinations of the operating speed and blockage ratio (the P-D relation). In addition, the dependence of the relation between the internal tube pressure and the blockage ratio (the P-${\beta}$ relation) was shown. Besides, the dependence of the relation between the total drag and the operating speed depending on various combinations of the blockage ratio and internal tube pressure (the D-V relation) was shown. Also, we compared the total (aerodynamic) drag of a train in the open field with the total drag of a train inside a tube. Then, we calculated the limit speed of the tube train, i.e., the maximum speed, for various internal tube pressures (the V-P relation) and the critical speed that leads to shock waves under various blockage ratios, which is related to the efficiency of the tube train (the critical V-${\beta}$ relation). Those results provide guidelines for the initial design and construction of a tube train system.

  • PDF

GIS Based Real-Time Transit Information Integration and Its Transit Planning Implications

  • Hwang, Da-Hae;Kim, Dong-Young;Choi, Yun-Soo;Cho, Seong-Kil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.87-93
    • /
    • 2007
  • Over the years, Advanced Public Transportation System (APTS) has been implemented to manage and operate public transportation system. With the expanding mass spatio-temporal data such as comprehensive spatial information of each individual passenger and public transportation vehicle, it has been required to consolidate and analyze these multiple data sets from various sources. This paper demonstrates how GIS is utilized for the consolidation of massive transit related spatio-temporal information. And it presents effective applications to improve transit planning process and support transit related decision-making activities. GIS based system is used to combine multi-agents' data in the areas of transit operation and individual transit ride and transfer management. Due to the unique comprehensiveness and the level of detail of the data provide by the Seoul Transit system, this GIS based information consolidation is the first in its class. Based on the integrated database, this paper describes the effective and efficient GIS based analysis deployed in a transportation system planning process. The data integration systems and analytic models developed in this paper can be transferred and applied by any municipal governments provided that the appropriate data is available.

  • PDF

Design and Implementation of a Multi-Interface Mobile Gateway for Seamless Handoff Sciences (끊김 없는 핸드오프를 위한 다중 인터페이스 이동형 게이트웨이 설계 및 구현)

  • Choi, Hyun-Jun;Lee, Chae-Seok;Lee, Sung-Ho;Kim, Jong-Deck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.474-482
    • /
    • 2012
  • Mobile Gateway(MG) is a wireless LAN device to provide internet services to a passenger on vehicles like a bus. For using internet services, MG connects the Road Side Unit AP(RSU AP) based on WLAN .To provide a stable communication service on the moving vehicle, handoff changing MG's RSU must be handled fast and stably. However, it has a physical limits to remove a disconnection time of handoff process by reason of its technological features. In this paper, we suggest a MIMG(Multi-Interface Mobile Gateway) executing seamless handoff by using multiple wireless LAN interfaces for connecting RSU. In the detailed way to do stable handoff, we suggest the "Link Sharing Technique" to disconnection time of packet transmission for RSU to MIMG and the "Path Sharing Technique" to remove disconnection time of packet transmission for MIMG to RSU. we implemented the MIMG which performs the suggested handoff technique. We confirmed the superiority of our system by remove of the disconnection time(0 ms), and improved over 50 % of the communication bandwidth.

A Numerical Study on the Optimization of Urea Solution Injection to Maximize Conversion Efficiency of NH3 (NH3 전환효율 극대화를 위한 Urea 인젝터의 분사 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jo, Nakwon;Oh, Sedoo;Jeong, Soojin;Park, Kyoungwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • From now on, in order to meet more stringer diesel emission standard, diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filters. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the urea-SCR device for diesel passenger cars and light duty vehicles. That is because their operational characteristics are quite different from heavy duty vehicles, urea solution injection should be changed with other conditions. Therefore, the number and diameter of the nozzle, injection directions, mounting positions in front of the catalytic converter are important design factors. In this study, major design parameters concerning urea solution injection in front of SCR are optimized by using a CFD analysis and Taguchi method. The computational prediction of internal flow and spray characteristics in front of SCR was carried out by using STAR-CCM+7.06 code that used to evaluate $NH_3$ uniformity index($NH_3$ UI). The design parameters are optimized by using the $L_{16}$ orthogonal array and small-the-better characteristics of the Taguchi method. As a result, the optimal values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance(ANOVA). The compared maximize $NH_3$ UI and activation time($NH_3$ UI 0.82) are numerically confirmed that the optimal model provides better conversion efficiency of $NH_3$. In addition, we propose a method to minimize wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading. Consequently, the thickness reduction of fluid film in front of mixer is numerically confirmed through the mounting mixer and correcting injection direction by using the trial and error method.