• Title/Summary/Keyword: Passenger Ship Fire

Search Result 23, Processing Time 0.017 seconds

Shipboard Fire Evacuation Route Prediction Algorithm Development (선박 화재시 승선자 피난동선예측을 위한 알고리즘 개발 기초연구)

  • Hwang, Kwang-Il;Cho, So-Hyung;Ko, Hoo-Sang;Cho, Ik-Soon;Yun, Gwi-Ho;Kim, Byeol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this study, an algorithm to predict evacuation routes in support of shipboard lifesaving activities is presented. As the first step of algorithm development, the feasibility and necessity of an evacuation route prediction algorithm are shown numerically. The proposed algorithm can be explained in brief as follows. This system continuously obtains and analyzes passenger movement data from the ship's monitoring system during non-disaster conditions. In case of a disaster, evacuation route prediction information is derived using the previously acquired data and a prediction tool, with the results provided to rescuers to minimize casualties. In this study, evacuation-related data obtained through fire evacuation trials was filtered and analyzed using a statistical method. In a simulation using the conventional evacuation prediction tool, it was found that reliable prediction results were obtained only in the SN1 trial because of the conceptual and structural nature of the tool itself. In order to verify the validity of the algorithm proposed in this study, an industrial engineering tool was adapted for evacuation characteristics prediction. When the proposed algorithm was implemented, the predicted values for average evacuation time and route were very similar to the measured values with error ranges of 0.6-6.9 % and 0.6-3.6 %, respectively. In the future, development of a high-performance evacuation route prediction algorithm is planned based on shipboard data monitoring and analysis.

A Study of Evacuation Route Guidance System using Location-based Information (위치기반 정보를 활용한 비상대피경로 안내 지원시스템 개발)

  • Kim, Ho-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.18-23
    • /
    • 2017
  • The shipyard quay process struggles to control workers and maintain a secure working environment because of the presence of at least 1,000 people. Therefore, safety accidents such as an explosion or a fire are likely to occur. With the recent increase in safety accidents at shipyards, the requirements for safety and process monitoring have been strengthened. Major shipyards are conducting researchto monitor the process in real time and to detect the work environment for safety. In this paper, we propose a safe and accurate evacuation route based on the information of the dangerous area and the user's location based on a mobile application to reduce the casualty accidents in the presence of many personnel in a concentrated area. To do this, we analyze the trend of the fire escape system on the ground building, compare various algorithms for escape route calculation, select appropriate algorithms for this study, and perform programming. A basic experiment was conducted to confirm the results. The proposed method is expected to be used in large ship construction sites, passenger ships and large public facilities to reduce accidents in the case of a safety accident.

The Development of a Ship Firefighting Drill Simulator (선박소화훈련 시뮬레이터 개발에 관한 연구)

  • Kim, Won-Ouk;Kim, Dae-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.410-416
    • /
    • 2016
  • After the Sewol Ferry accident, the importance of maritime safety has been emphasized in Korea. In particular, educational and experience training are not only being conducted for maritime personnel but also in schools and at maritime-related organizations in order to broadly instill maritime safety awareness. Based on SOLAS regulations, safety education for sailors conducted every 10 days passenger boats, and fire-fighting drills and abandon-ship training should be conducted once a month on merchant ships. After the Sewol Ferry accident, the maximum number of trainees was reduced from 40 to 20 in order to improve the effectiveness of these training sessions by requiring all trainees to participate in the actual training. The current training process consists of two steps: textbook-based theoretical training and actual practice. Current training environment provides limited capability from human and facility recourses which limit the numbers of trainee participated and system operation time. By introducing the simulation training, it will improve the trainee skill and performance prior to the on-site training and allow the more effective and rapid progress on actual practice. Therefore, it will be proposed the three-step training method in order to improve the effectiveness on fire-fighting drill in Maritime Safety Education on this study. This study suggests a three step training method that would increase the efficiency of maritime safety education. An image-training step to enhance individual task awareness and equipment usage via simulation techniques after theoretical training has been added. To implement this simulation, a virtual training session will be conducted before actual training, based on knowledge obtained from theoretical training, which is expected to increase the speed with which trainees can adapt during the practical training session. In addition, due to the characteristics of the simulation, repeated training is possible for reaction drills in emergency circumstances and other various scenarios that are difficult to replicate in actual training. The efficiency of training is expected to improve because trainees will have practiced before practical training takes place, which will decrease the time needed for practical training and increase the number of training sessions that can be executed, increasing the efficiency of training overall. This study considers development methods for fire-fighting drill simulations using virtual reality techniques.