• Title/Summary/Keyword: Passage Area Ratio

Search Result 41, Processing Time 0.024 seconds

Effect of the Passage Area Ratio of an Impeller on the Performance of Two-Dimensional Centrifugal Compressors (임펠러의 유로 면적비가 2차원 원심압축기의 성능에 미치는 영향)

  • Park, Han-Young;Shin, You-Hwan;Choi, Hang-Cheol;Kim, Kwang-Ho;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.22-29
    • /
    • 2008
  • This study is performed to understand the effect of the variation in the passage area of a two-dimensional impeller on its performance characteristics. We observe the results with changing the area ratio of inlet to outlet about $1{\sim}2.8$. A comparison between the experimental and numerical results was performed for the same configuration in order to verify the reliability of the CFD code. Overall characteristics in the passages of impeller were analyzed in detail including streamline, Mach number, pressure and polytropic efficiency distribution. When the passage area ratio exceeds 2, the pressure ratio is high. An area ratio of 2.3 showed the highest efficiency. The results will be used as useful reference data to establish the design concept of two-dimensional impeller and to improve its performance.

A Study for Technique of Detecting the Real-time Route Aberrance in the Passage Route Using Ship's Domain Theory

  • Gang, Sang-Guen
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.273-278
    • /
    • 2017
  • This paper is to study a technique to detect the real-time route aberrance on the passage route using bumper area of the ship domain theory. In order to evaluate the risk of route aberrance, a quarter line was created between the center line and the outer line, and a passage route with the image line outside the outer line was designed. It calculated the real-time route aberrance with the vessel bumper area to measure the risk level on the passage route. The route aberrance using overlap bumper area was simulated through three kinds of scenario vessel at the designed passage route. In this paper, we proposed Ratio to Aberrance Risk as one of the evaluation parameter to detect the route aberrance risk at each sector in the passage route and to give the evaluation criteria of 5 levels for seafarer's navigation safety. The purpose of this work is to provide the information of the route aberrance to seafarer automatically, to make it possible to prevent the human errors of seafarer on the high risk aberrance route. As the real-time risk of route aberrance on the passage route is automatically evaluated, it was well thought that seafarer can have only a little workload in order to know the risk of route aberrance at early-time. Following the further development of this work, the techniques for detecting the real-time route aberrance will be able to use the unmanned vessel.

Numerical Analysis of Flow Characteristics in Swirl Chamber Type Diesel Engine (연락공 형상에 따른 와류실식 디젤기관의 유동 특성 수치해석)

  • Kwon Taeyun;Choi Gyeungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.49-57
    • /
    • 2005
  • In this study, in-cylinder flow of the swirl chamber type diesel engine numerically simulated by VECTIS code. The flow fields during the intake and compression process were also investigated in detail. Numerical results revealed that the generation and distortion of the swirling, tumbling vortices and those influences on turbulence kinetic energy by shape of the jet passage, angle and area. It was also found that flow characteristics were affected by inflow velocity that depends on change of the jet passage shape. Swirl ratio was increased according to decrease of jet passage area, and was affected by piston motion according to increase of jet passage angle. Tumbling vortices had the similar in various cases, but tumble ratio was increased with the inflow velocity. The generation of turbulence kinetic energy was considerably influenced by complex effects of swirling and tumbling vortices.

The Effect of Partial Blockage of Flow Passage to Performance Change of a Liquid Rocket Engine (유로 단면 부분 폐쇄가 액체로켓엔진 성능 변화에 미치는 영향)

  • Cho, Won Kook
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • The analysis has been performed on the blockage effect at the propellant flow passage in a liquid rocket engine. This simulates an example of emergency situation where flow passage is partially blocked. The analysis method has been validated by predicting the pump head and flow rate within 1% precision against the measured data of turbopump-gas generator coupled test. When the oxidizer passage is reduced it is predicted that the mixture ratio decreases, the oxidizer pump head increases and the gas generator pressure increases. When the fuel passage is reduced it is predicted that the mixture ratio increases, fuel flow rate decreases and the fuel pump head increases.

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.6
    • /
    • pp.427-434
    • /
    • 2009
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The numerical simulations for five different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermoaerodynamic performance for five different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, volume and area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 %, and the value of maximum ratio of Nusselt number augmentation is 7.05% when the riblet angle is $60^{\circ}$. The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum volume and area goodness factors are obtained when the riblet angle is $60^{\circ}$.

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2465-2470
    • /
    • 2008
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The Numerical simulations for the 5 different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermo-aerodynamic performance for the 5 different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, Volume and Area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 [%], and the value of maximum ratio of Nusselt number augmentation is 7.05 [%] when the riblet angle is $60^{\circ}$ (Case5). The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum Volume and Area goodness factor are obtained when the riblet angle is $60^{\circ}$ (Case5).

  • PDF

A Study on the Change of Paradigm and Analysis of Qualitative Space in Public Space - Focused on the Entrance Floor in General Hospital over 500 beds in Korea - (공용 공간의 패러다임 변화와 질적 공간 분석 - 500병상 이상 국내 종합병원 진입층을 중심으로 -)

  • Son, Ji-Hye;Yang, Nae-Won
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.212-220
    • /
    • 2014
  • Entrance floor in hospital has became important space for medical service in holistic perspective and image enhancement. However, basically a discussion of the qualitative properties and the role of public space is paucity in change of public spaces paradigm. In accordance with this problem, this study consider the change of paradigm in public space based on earlier studies and create classification criterion of space. According to the criterion, G/D ratio and the qualitative spatial area ratio of 26 general hospitals which were planned over 500 beds are analyzed by case study method. The conclusion of this study is as follows. 1) The space according to the medical function is variable element. So the public space should be planned from function-subordinate space to self-reliance space in the future. 2) There is no correlation between the high G/D ratio and the high ratio of qualitative spacial area. In other word It's hard to say that the public space which G/D ratio is high is qualitative space. 3) Since 2000, various types in accordance with the circulation system is applied to public space. And ratio of qualitative spacial area is relatively high in the street type and the concourse type. 4) The qualitative spatial area ratio of stay space is higher than passage's one.

An Experimental Study of Flow Field in a Torque Converter (토크 컨버터 내부 유동장의 실험적 연구)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2010
  • The flow field measurements were conducted on the planes between impeller blades, and the gap between the impeller and turbine blades under speed ratio of 0.4. The study showed that high velocity regions move from locations near the suction surface of the impeller to the pressure blade, shroud corner as flow progresses from the mid-chord of impeller passage to exit and out into the gap region. Planes 3 through 5 also showed flow reversal occurring in the area near the shell surface and progress far into the impeller passage from the impeller passage exit, near shell surface. This affected the converter efficiency negatively. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.

COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

  • Chung, S.S.;Ha, J.Y.;Park, J.S.;Kim, K.J.;Yeom, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

STUDY ON PRE-MIXTURE COMBUSTION IN A SUB-CHAMBER TYPE CVC WITH MULTIPLE PASSAGE HOLES

  • PARK J. S.;YEOM J. K.;LEE T. W.;HN J. Y.;CHUNG S. S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • An experimental study was carried out to obtain the fundamental data about the effect of sub-chamber on pre-mixture combustion. A eve (constant volume combustor) divided into a sub-chamber and a main chamber was used in this experiment. The volume of the sub-chamber was varid trom $0.45\%$ to $1.4\%$ about the whole combustion chamber. The sub-chamber has twelve narrow radial passage holes and a spark plug to ignite the pre-mixture. As the ignition occurs in the sub-chamber by a spark discharge, burned and unburned gas including a great number of radicals is injected into the main chamber, then the multi-point ignition occurs in the main chamber. The combustion pressure is measured to calculate the burning velocity mainly as a function of the sub-chamber volume, the diameter of the passage holes, and the equivalence ratio. In the case of RI (radical ignition) methods, the overall burning time became very short and the maximum burning pressure was slightly increased as compared with that of SI (spark ignition) method. The optimum design value of the sub-chamber is near 0.11 $cm^{-l}$ in the ratio of total area of holes to the sub-chamber volume.