• Title/Summary/Keyword: Parts Image Recognition

Search Result 163, Processing Time 0.034 seconds

Skin Color Based Facial Features Extraction

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.351-354
    • /
    • 2011
  • This paper discusses on facial features extraction based on proposed skin color model. Different parts of face from input image are segmented based on skin color model. Moreover, this paper also discusses on concept to detect the eye and mouth position on face. A height and width ratio (${\delta}=1.1618$) based technique is also proposed to accurate detection of face region from the segmented image. Finally, we have cropped the desired part of the face. This exactly exacted face part is useful for face recognition and detection, facial feature analysis and expression analysis. Experimental results of propose method shows that the proposed method is robust and accurate.

Object Recognition Method for Industrial Intelligent Robot (산업용 지능형 로봇의 물체 인식 방법)

  • Kim, Kye Kyung;Kang, Sang Seung;Kim, Joong Bae;Lee, Jae Yeon;Do, Hyun Min;Choi, Taeyong;Kyung, Jin Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.901-908
    • /
    • 2013
  • The introduction of industrial intelligent robot using vision sensor has been interested in automated factory. 2D and 3D vision sensors have used to recognize object and to estimate object pose, which is for packaging parts onto a complete whole. But it is not trivial task due to illumination and various types of objects. Object image has distorted due to illumination that has caused low reliability in recognition. In this paper, recognition method of complex shape object has been proposed. An accurate object region has detected from combined binary image, which has achieved using DoG filter and local adaptive binarization. The object has recognized using neural network, which is trained with sub-divided object class according to object type and rotation angle. Predefined shape model of object and maximal slope have used to estimate the pose of object. The performance has evaluated on ETRI database and recognition rate of 96% has obtained.

A Study on Face Image Recognition Using Feature Vectors (특징벡터를 사용한 얼굴 영상 인식 연구)

  • Kim Jin-Sook;Kang Jin-Sook;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.897-904
    • /
    • 2005
  • Face Recognition has been an active research area because it is not difficult to acquire face image data and it is applicable in wide range area in real world. Due to the high dimensionality of a face image space, however, it is not easy to process the face images. In this paper, we propose a method to reduce the dimension of the facial data and extract the features from them. It will be solved using the method which extracts the features from holistic face images. The proposed algorithm consists of two parts. The first is the using of principal component analysis (PCA) to transform three dimensional color facial images to one dimensional gray facial images. The second is integrated linear discriminant analusis (PCA+LDA) to prevent the loss of informations in case of performing separated steps. Integrated LDA is integrated algorithm of PCA for reduction of dimension and LDA for discrimination of facial vectors. First, in case of transformation from color image to gray image, PCA(Principal Component Analysis) is performed to enhance the image contrast to raise the recognition rate. Second, integrated LDA(Linear Discriminant Analysis) combines the two steps, namely PCA for dimensionality reduction and LDA for discrimination. It makes possible to describe concise algorithm expression and to prevent the information loss in separate steps. To validate the proposed method, the algorithm is implemented and tested on well controlled face databases.

Patent Document Similarity Based on Image Analysis Using the SIFT-Algorithm and OCR-Text

  • Park, Jeong Beom;Mandl, Thomas;Kim, Do Wan
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.70-79
    • /
    • 2017
  • Images are an important element in patents and many experts use images to analyze a patent or to check differences between patents. However, there is little research on image analysis for patents partly because image processing is an advanced technology and typically patent images consist of visual parts as well as of text and numbers. This study suggests two methods for using image processing; the Scale Invariant Feature Transform(SIFT) algorithm and Optical Character Recognition(OCR). The first method which works with SIFT uses image feature points. Through feature matching, it can be applied to calculate the similarity between documents containing these images. And in the second method, OCR is used to extract text from the images. By using numbers which are extracted from an image, it is possible to extract the corresponding related text within the text passages. Subsequently, document similarity can be calculated based on the extracted text. Through comparing the suggested methods and an existing method based only on text for calculating the similarity, the feasibility is achieved. Additionally, the correlation between both the similarity measures is low which shows that they capture different aspects of the patent content.

Customized Pattern-Recognition Technique using Vision Measurement System Development in New Car Manufacturing Process (패턴인식 기법을 적용한 신차 제조공정 맞춤식 비젼 계측시스템 개발)

  • Lee, Gyung-Il;Kim, Jae-yeol;Roh, Chi-sung;Choi, Choul Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.51-59
    • /
    • 2016
  • Measurements of the automobile manufacturers are available anywhere and anytime, directly based on the criterion of failure is measured. The maintenance of high-precision production activities is direct evidence of the fact that competitive manufacturing activities are very important in determining the success of companies to recall defective starting from raw material costs. The current manufacturing sites produce calipers and clearance gauge the degree of tool only specific. Therefore, judging the quality, including the number of errors, requires a lot of attention to the dimension failures in day-to-day measurements and measurement tasks and duties repeated in difficult situations. In this paper, we aim to develop a vehicle manufacturing plant site using each of the manufacturing processes while operating a measurement tool. We display it using the Image Processing PC-based S/W with all those visual facts by management and recorded as image information a more accurate and current situation to obtain information and share visual measurements. We carry out research on the design and development vision inspection algorithm applied for pattern-recognition techniques that can help manufacturing site quality control.

A Novel Least Square and Image Rotation based Method for Solving the Inclination Problem of License Plate in Its Camera Captured Image

  • Wu, ChangCheng;Zhang, Hao;Hua, JiaFeng;Hua, Sha;Zhang, YanYi;Lu, XiaoMing;Tang, YiChen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5990-6008
    • /
    • 2019
  • Recognizing license plate from its traffic camera captured images is one of the most important aspects in many traffic management systems. Despite many sophisticated license plate recognition related algorithms available online, license plate recognition is still a hot research issue because license plates in each country all round the world lack of uniform format and their camera captured images are often affected by multiple adverse factors, such as low resolution, poor illumination effects, installation problem etc. A novel method is proposed in this paper to solve the inclination problem of license plates in their camera captured images through four parts: Firstly, special edge pixels of license plate are chosen to represent main information of license plates. Secondly, least square methods are used to compute the inclined angle of license plates. Then, coordinate rotation methods are used to rotate the license plate. At last, bilinear interpolation methods are used to improve the performance of license plate rotation. Several experimental results demonstrated that our proposed method can solve the inclination problem about license plate in visual aspect and can improve the recognition rate when used as the image preprocessing method.

Detecting Numeric and Character Areas of Low-quality License Plate Images using YOLOv4 Algorithm (YOLOv4 알고리즘을 이용한 저품질 자동차 번호판 영상의 숫자 및 문자영역 검출)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, research on license plate recognition, which is a core technology of an intelligent transportation system(ITS), is being actively conducted. In this paper, we propose a method to extract numbers and characters from low-quality license plate images by applying the YOLOv4 algorithm. YOLOv4 is a one-stage object detection method using convolution neural network including BACKBONE, NECK, and HEAD parts. It is a method of detecting objects in real time rather than the previous two-stage object detection method such as the faster R-CNN. In this paper, we studied a method to directly extract number and character regions from low-quality license plate images without additional edge detection and image segmentation processes. In order to evaluate the performance of the proposed method we experimented with 500 license plate images. In this experiment, 350 images were used for training and the remaining 150 images were used for the testing process. Computer simulations show that the mean average precision of detecting number and character regions on vehicle license plates was about 93.8%.

A 3D Vision Inspection Method using One Camera (1대의 카메라를 이용한 3차원 비전 검사 방법)

  • Jung Cheol-Jin;Huh Kyung Moo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • In this paper, we suggest a 3D vision inspection method which use only one camera. If we have the database of pattern and can recognize the object, and also estimate the rotated shape of the parts, we can inspect the parts using only one image. We used the 3D database and the 2D geometrical pattern matching, and the rotation transition theory about the algorithm. As the results, we could have the capability of the recognition and inspection of the rotated object through the estimation of rotation an81e. We applied our suggested algorithm to the inspection of typical IC and capacitor, and compared our suggested algorithm with the conventional 2D inspection method and the feature space trajectory method.

Development of camera caliberation technique using neural-network (신경회로망을 이용함 카메라 보정기법 개발)

  • 한성현;왕한홍;장영희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1617-1620
    • /
    • 1997
  • This paper describes the camera caliberation based-neural network with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. Radial distoriton causes an inward or outward displacement of a given image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly. It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing. The performance of proposed camera aclibration is illustrated by simulation and experiment.

  • PDF

Camera Modeling for Kinematic Calibration of a Robot Manipulator (로봇 매니퓰레이터의 자세 보정을 위한 카메라 모델링)

  • 왕한흥;장영희;김종수;이종붕;한성연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.179-183
    • /
    • 2002
  • This paper presents a new approach to the calibration of a SCARA robot orientation with a camera modeling that accounts for major sources of camera distortion, namely, radial, decentering, and thin prism distortion. radial distortion causes an inward or outward displacement of a given Image point from its ideal location. Actual optical systems are subject to various degrees of decentering, that is, the optical centers of lens elements are not strictly collinear. Thin prism distortion arises from imperfection in lens design and manufacturing as well as camera assembly It is our purpose to develop the vision system for the pattern recognition and the automatic test of parts and to apply the line of manufacturing.

  • PDF