• Title/Summary/Keyword: Partitioning Technique

Search Result 214, Processing Time 0.031 seconds

A Stable Multilevel Partitioning Algorithm for VLSI Circuit Designs Using Adaptive Connectivity Threshold (가변적인 연결도 임계치 설정에 의한 대규모 집적회로 설계에서의 안정적인 다단 분할 방법)

  • 임창경;정정화
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.69-77
    • /
    • 1998
  • This paper presents a new efficient and stable multilevel partitioning algorithm for VLSI circuit design. The performance of multilevel partitioning algorithms that are proposed to enhance the performance of previous iterative-improvement partitioning algorithms for large scale circuits, depend on choice of construction methods for partition hierarchy. As the most of previous multilevel partitioning algorithms forces experimental constraints on the process of hierarchy construction, the stability of their performances goes down. The lack of stability causes the large variation of partition results during multiple runs. In this paper, we minimize the use of experimental constraints and propose a new method for constructing partition hierarchy. The proposed method clusters the cells with the connection status of the circuit. After constructing the partition hierarchy, a partition improvement algorithm, HYIP$^{[11]}$ using hybrid bucket structure, unclusters the hierachy to get partition results. The experimental results on ACM/SIGDA benchmark circuits show improvement up to 10-40% in minimum outsize over the previous algorithm $^{[3] [4] [5] [8] [10]}$. Also our technique outperforms ML$^{[10]}$ represented multilevel partition method by about 5% and 20% for minimum and average custsize, respectively. In addition, the results of our algorithm with 10 runs are better than ML algorithm with 100 runs.

  • PDF

The cooperate navigation for swarm robot using space partitioning technique (군집로봇의 협조탐색을 이용한 공간분할기법)

  • Bang, Mun-Seop;Kim, Jong-Sun;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1892-1893
    • /
    • 2011
  • 본 논문에서는 Centroidal Voronoi Tessellation을 이용하여 군집로봇의 협조탐색을 위한 공간분할기법을 제안한다. 탐색공간은 Centroidal Voronoi Tessellation을 이용하여 분할한다. 전역 경로 계획 및 군집 로봇 간의 충돌 회피는 포텐셜 필드를 이용한다. 탐색공간에 밀도 함수를 사용하여 공간분할의 유동성을 부여한다. 마지막으로, 군집로봇의 협조탐색의 가능성을 시뮬레이션을 통하여 확인한다.

  • PDF

KTX Trainset Maintenance Routing and Allocation System for Korea High-Speed Rail (한국고속철도를 위한 차량운용 및 할당시스템)

  • Hong Soon-Hum;Kim Seongho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.391-397
    • /
    • 2005
  • In this paper we present a model for the maintenance routing construction and the trainset allocation (maintenance routing problem). The model solves the maintenance routing problem using column generation algorithm which was used to combine constraint programming and linear programming. Ilog-cplex was used to solve the linear programming model and Ilog-solver was used to solve the constraint programming model. The computational experience is also provided.

Color Image Segmentation using Hierarchical Histogram (계층적 히스토그램을 이용한 컬러영상분할)

  • 김소정;정경훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1771-1774
    • /
    • 2003
  • Image segmentation is very important technique as preprocessing. It is used for various applications such as object recognition, computer vision, object based image compression. In this paper, a method which segments the multidimensional image using a hierarchical histogram approach, is proposed. The hierarchical histogram approach is a method that decomposes the multi-dimensional situation into multi levels of 1 dimensional situations. It has the advantage of the rapid and easy calculation of the histogram, and at the same time because the histogram is applied at each level and not as a whole, it is possible to have more detailed partitioning of the situation.

  • PDF

SEVERAL NEW PRACTICAL CRITERIA FOR NONSINGULAR H-MATRICES

  • Mo, Hongmin
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.987-992
    • /
    • 2010
  • H-matrix is a special class of matrices with wide applications in engineering and scientific computation, how to judge if a given matrix is an H-matrix is very important, especially for large scale matrices. In this paper, we obtain several new practical criteria for judging nonsingular H-matrices by using the partitioning technique and Schur complement of matrices. Their effectiveness is illustrated by numerical examples.

Effective Spatial Partitioning Technique for Query Result Size Estimation (질의 결과 크기 추정을 위한 효과적인 공간 분할 기법)

  • 김현국;김학자;황환규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.55-57
    • /
    • 2002
  • 공간 데이터베이스의 규모는 매우 방대하여 질의 처리에 많은 비용이 발생한다. 따라서 효율적인 질의 처리를 위해서는 질의 수행 결과의 예측이 필요하다. 이를 위해 실제 공간 데이터의 특성을 근접하게 나타내는 요약 데이터를 생성하여 그 결과를 통해 질의 결과의 크기를 추정하게 된다. 기존의 공간 데이터 요약 기법으로는 면적 균등 분할 기법, 개수 균등 분할 기법, 인덱스 분활 기법 등이 있다. 본 논문에서는 기존에 연구된 다양한 분말 기법에 대해 알아보고, 힐버트 공간 재움 곡선 방법에 개수 균등 분말 기법을 적용시킨 새로운 공간 분할 방법을 제안하여 기존의 방법과 새로운 방법의 성능을 비교한다.

  • PDF

The Cooperate Navigation for Swarm Robot Using Centroidal Voronoi Tessellation (무게중심 보로노이 테셀레이션을 이용한 군집로봇의 협조탐색)

  • Bang, Mun-Seop;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.130-134
    • /
    • 2012
  • In this paper, we propose a space partitioning technique for swarm robots by using the Centroidal Voronoi Tessellation. The proposed method consists of two parts such as space partition and collision avoidance. The space partition for searching a given space is carried out by a density function which is generated by some accidents. The collision avoidance is implemented by the potential field method. Finally, the numerical experiments show the effectiveness and feasibility of the proposed method.

Trajectory Indexing Technique with Time-sliced Index Partitioning (Time Slice에 따라 인덱스를 분할하는 이동경로 인덱싱 기법)

  • 강현민;김기홍;차상균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.231-233
    • /
    • 1999
  • 시공간 상에서 움직이는 물체의 이동경로는 일반적으로 MBR이 매우 크므로, R-tree 계열의 다차원 인덱싱 기법을 적용할 때 질의시 겹침 영역이 많이 발생하는 문제점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 time slice에 따라 이동경로의 MBR을 나누어 별도의 인덱스에 저장하는 기법을 제안한다. 이 기법을 적용하면 MBR의 평균 크기가 줄어들어 인덱스 페이지 및 데이터 페이지 접근횟수를 감소시킬 수 있을 뿐만 아니라, 시간이 지나 질의가 매우 드물게 수행되는 데이터에 대한 엔트리를 삭제하여 검색 범위를 줄이는 것이 용이하다. 또한 본 논문에서는 질의 성능을 최적화하기 위해서 time slice를 어떻게 설계해야 하는지에 대해서도 논의한다.

  • PDF

Stochastic Simple Hydrologic Partitioning Model Associated with Markov Chain Monte Carlo and Ensemble Kalman Filter (마코프 체인 몬테카를로 및 앙상블 칼만필터와 연계된 추계학적 단순 수문분할모형)

  • Choi, Jeonghyeon;Lee, Okjeong;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.353-363
    • /
    • 2020
  • Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.

HW/SW Partitioning Techniques for Multi-Mode Multi-Task Embedded Applications (멀티모드 멀티태스크 임베디드 어플리케이션을 위한 HW/SW 분할 기법)

  • Kim, Young-Jun;Kim, Tae-Whan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.8
    • /
    • pp.337-347
    • /
    • 2007
  • An embedded system is called a multi-mode embedded system if it performs multiple applications by dynamically reconfiguring the system functionality. Further, the embedded system is called a multi-mode multi-task embedded system if it additionally supports multiple tasks to be executed in a mode. In this Paper, we address a HW/SW partitioning problem, that is, HW/SW partitioning of multi-mode multi-task embedded applications with timing constraints of tasks. The objective of the optimization problem is to find a minimal total system cost of allocation/mapping of processing resources to functional modules in tasks together with a schedule that satisfies the timing constraints. The key success of solving the problem is closely related to the degree of the amount of utilization of the potential parallelism among the executions of modules. However, due to an inherently excessively large search space of the parallelism, and to make the task of schedulabilty analysis easy, the prior HW/SW partitioning methods have not been able to fully exploit the potential parallel execution of modules. To overcome the limitation, we propose a set of comprehensive HW/SW partitioning techniques which solve the three subproblems of the partitioning problem simultaneously: (1) allocation of processing resources, (2) mapping the processing resources to the modules in tasks, and (3) determining an execution schedule of modules. Specifically, based on a precise measurement on the parallel execution and schedulability of modules, we develop a stepwise refinement partitioning technique for single-mode multi-task applications. The proposed techniques is then extended to solve the HW/SW partitioning problem of multi-mode multi-task applications. From experiments with a set of real-life applications, it is shown that the proposed techniques are able to reduce the implementation cost by 19.0% and 17.0% for single- and multi-mode multi-task applications over that by the conventional method, respectively.