• Title/Summary/Keyword: Partition approximation method

Search Result 22, Processing Time 0.016 seconds

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation of Learning and Evolution (학습과 진화의 Lamarckian 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 김대진;이한별;강대성
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.85-98
    • /
    • 1998
  • This paper proposes a new design method of neuro-FLC by the Lamarckian co-adaptation scheme that incorporates the backpropagation learning into the GA evolution in an attempt to find optimal design parameters (fuzzy rule base and membership functions) of application-specific FLC. The design parameters are determined by evolution and learning in a way that the evolution performs the global search and makes inter-FLC parameter adjustments in order to obtain both the optimal rule base having high covering value and small number of useful fuzzy rules and the optimal membership functions having small approximation error and good control performance while the learning performs the local search and makes intra-FLC parameter adjustments by interacting each FLC with its environment. The proposed co-adaptive design method produces better approximation ability because it includes the backpropagation learning in every generation of GA evolution, shows better control performance because the used COG defuzzifier computes the crisp value accurately, and requires small workspace because the optimization procedure of fuzzy rule base and membership functions is performed concurrently by an integrated fitness function on the same fuzzy partition. Simulation results show that the Lamarckian co-adapted FLC produces the most superior one among the differently generated FLCs in all aspects such as the number of fuzzy rules, the approximation ability, and the control performance.

  • PDF

A Novel Bit Allocation Method Using Two-phase Optimization Technique (2단계 최적화 방법을 이용한 비트할당 기법)

  • 김욱중;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2032-2041
    • /
    • 1998
  • In this work, we propose a novel bit allocation method that is to minimize overall distortions subject ot the bit rate constraint. We partition the original bitallocation problem into 'macroblock level bit allocation' problems that can be solved by conventional Lagrangian mutiplier methods and a 'frame level bit allocation' problem. To tackle the frame level problem, 'two-phase optimization' algorithm is used with iter-frame dependency model. While the existing approaches are almost impossible to find the macroblock-unit result for the moving picture coding system due to high computational complexity, the proposed algorithm can drastically reduce the computational loads by the problem partitioning and can obtain the result close to the optimal solution. Because the optimally allocated results can be used as a benchmark for bit allocation methods, the upper performance limit, or a basis for approximation method development, we expect that the proposed algorithm can be very useful for the bit allocation related works.

  • PDF