Misun Yu;Yongin Kwon;Jemin Lee;Jeman Park;Junmo Park;Taeho Kim
ETRI Journal
/
제45권2호
/
pp.318-328
/
2023
Recently, embedded systems, such as mobile platforms, have multiple processing units that can operate in parallel, such as centralized processing units (CPUs) and neural processing units (NPUs). We can use deep-learning compilers to generate machine code optimized for these embedded systems from a deep neural network (DNN). However, the deep-learning compilers proposed so far generate codes that sequentially execute DNN operators on a single processing unit or parallel codes for graphic processing units (GPUs). In this study, we propose PartitionTuner, an operator scheduler for deep-learning compilers that supports multiple heterogeneous PUs including CPUs and NPUs. PartitionTuner can generate an operator-scheduling plan that uses all available PUs simultaneously to minimize overall DNN inference time. Operator scheduling is based on the analysis of DNN architecture and the performance profiles of individual and group operators measured on heterogeneous processing units. By the experiments for seven DNNs, PartitionTuner generates scheduling plans that perform 5.03% better than a static type-based operator-scheduling technique for SqueezeNet. In addition, PartitionTuner outperforms recent profiling-based operator-scheduling techniques for ResNet50, ResNet18, and SqueezeNet by 7.18%, 5.36%, and 2.73%, respectively.
데이터 마이닝 또는 기계학습을 위한 무감독 학습 알고리즘인 개념적 클러스터링을 이용하여 계층적 구조를 유도해낼 때 자료를 처리하는 순서에 따라 서로 다른 결과에 도달하는 양상을 보인다. 이 순서 바이어스 문제를 해결하는 방안으로 먼저 주어진 자료 세트에 분류를 시행하여 초기 분류를 형성한다. 이 분류를 통해 최종 분류의 가능한 클래스 수를 예측하고 이 정보에 기반하여 자료 분석과 중심 정렬을 통해 자료 처리 순서를 새로이 결정한다. 재배열된 자료 세트에 ITERATE 분류 과정을 적용해 새로운 분류를 생성한다. 본 논문에서는 이 과정을 반복하여 안정적이고 최적의 분류 점수를 갖도록 하는 알고리즘 REIT를 제안하였다. 이 알고리즘을 여러 자료 세트에 적용하고 순서 바이어스의 영향을 최소화하는지 여부를 실험을 통해 비교 분석하였다.
In traditional target-based data deduplication system, all of the files should be chunked and compared for reducing duplicated data blocks. One of the critical problem of this system arises as the number of files are increasing. The system suffers from computational delay for calculating hash value and processing metadata for handling each file. To overcome this problem, in this paper, we propose a novel data deduplication system using logical partition of storage system. The system applies data deduplication scheme to each logical partition not each file. Experiment result shows that the proposed system is more efficient compared with traditional deduplication scheme where the logical partition is full of files by 50% in terms of deduplication capacity and processing time.
항공기 탑재형 SAR에서 요동보상 후 남아있는 잔여 오차 및 공간 가변적 오차 등으로 인해 품질이 저하된 SAR 영상을 보상하기 위한 분할처리 기반 자동초점 기법을 제시한다. Spotlight SAR는 공간 분할하고, Stripmap SAR는 시간 분할한 뒤, 분할된 데이터에 대해 영상을 생성한 후, 추정된 오차의 적합성 분석과정이 포함된 구역 자동초점 기법(Autofocus)를 수행한다. 또한 분할된 영상에서 위상오차 추정이 되지 않아 보상이 되지 않는 경우에는 인접한 분할 영상의 위상오차에 가중치를 부여하여 보상하는 과정을 통해 전체 영상의 화질을 향상시키는 방법을 제시한다.
상용 데이타 마이닝 도구에서는 기본적으로 이진 속성에 대한 연관규칙 마이닝만을 지원한다. 그러나, 일반적인 트랜잭션 데이타베이스는 이진 속성 뿐 아니라 정량적 속성을 포함한다. 이에 따라, 본 논문에서는 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 마이닝하는 체계적인 접근법을 제안한다. 이를 위해, 우선 상용 데이타 마이닝 도구를 사용하여 정량적 연관규칙을 찾아내기 위한 전체적인 프레임워크를 제안한다. 제안한 프레임워크는 정량적 속성을 이진 속성으로 변환하는 전처리 과정과 마이닝된 이진 연관규칙을 다시 정량적 연관규칙으로 변환하는 후처리 과정으로 구성된다. 다음으로, 전처리 과정을 위한 구간 분할의 개념을 제시하고, 기존의 평균 및 중앙치 기반 양분할 기법과 동일 너비 및 동일 깊이 기반 다분할 기법을 구간 분할의 개념으로 정형적으로 재정의한다. 그런데, 이들 기존 분할 기법은 속성 값의 분포를 고려하지 않은 문제점이 있다. 본 논문에서는 이를 해결하기 위하여 표준편차 최소화 기법을 제안한다. 표준편차 최소화 기법은 이웃한 속성 값의 표준편차 변화가 작다면 동일한 구간에 포함시키고, 표준편차 변화가 크다면 다른 구간으로 분할하는 매우 직관적인 분할 기법이다. 또한, 후처리 과정으로는 이진 연관규칙들을 통합하고 이를 다시 정량적 연관규칙으로 변환하는 방법을 제안한다. 마지막으로, 다양한 실험을 통하여 제안한 프레임워크가 바르게 동작함을 보이고, 표준편차 최소화 기법이 다른 기법에 비하여 우수함을 입증한다. 이 같은 결과를 볼 때, 제안한 프레임워크는 일반 사용자가 상용 데이타 마아닝 도구를 사용하여 정량적 연간규칙을 쉽게 마이닝 할 수 있는 매우 실용적인 접근법이라 생각한다.
This paper proposes a new histogram partition stretching and shrinking method for infrared image enhancement. The proposed method divides the histogram of an input image into three partitions according to its mean value and standard deviation. The method stretches both the dark partition and the bright partition of the histogram, while it shrinks the medium partition. As the result, both the dark part and the bright part of the image have more brightness levels. The proposed method is implemented using C language in an embedded Linux system for a high-speed real-time image processing. Experiments were conducted by using various infrared images. The results show that the proposed algorithm is successful for the infrared image enhancement.
미지의 패턴을 분류하기 위해서 사용되는 메모리 기반 학습 기법은 만족할만한 분류 성능을 보여주고 있다. 하지만 메모리 기반 학습기법은 단순히 패턴과 메모리에 저장된 예제들 간의 거리를 기준으로 분류하므로, 패턴을 분류하는 처리과정을 설명할 수 없다는 문제점을 가지고 있다. 본 논문에서는 RPA(Recursive Partition Averaging) 기법을 이용하여 패턴을 분류하는 과정을 설명할 수 있는 규칙 추출 알고리즘과 또한 일반화 성능을 향상시키기 위하여 규칙의 조건을 확장하는 알고리즘을 제안한다.
본 논문에서는 메모리 기반 추론(MBR : Memory Based Reasoning) 기법에서 사용하는 기억공간과 분류시간의 향상을 위하여 고정 분할 평균(FPA : Fixed Partition Averaging) 알고리즘을 제안하였다. 제안된 방법은 전체 학습패턴들을 대표하는 패턴을 추출하여 효과적인 메모리 사용을 가능하게 하는 방법으로서, 패턴 공간을 일정 개수의 초월평면으로 분할한 후, 초월평면별로 소속된 패턴들의 평균값을 계산하여 대표패턴을 추출한다. 또한 분류성능의 향상을 위하여, 특징과 클래스간의 상호정보(Mutual Information)를 특징의 가중치로 사용하였다.
최근 항공기, 자동차와 같은 시스템들은 크기, 무게, 전력 등의 문제로 기존 연합형(Federated) 구조에서 모듈형(Modular) 구조로 개발되는 추세이며, 단일 하드웨어에 파티션 개념을 적용하여 다수의 논리적 노드들을 운용할 수 있는 파티션 운영체제도 등장하고 있다. 분산 복구 블록은 실시간 시스템에 적용 가능한 소프트웨어 결함 허용 기법으로 다수의 물리적 노드들을 동기화 시켜 동작시킴으로써 실시간 절체가 가능하도록 하는 설계 기법이다. 분산 복구 블록은 노드들 간의 실시간 동기화를 필요로 하기 때문에 단일 코어 기반의 파티션 구조에는 적합하지 않으며, 적용을 위해서는 멀티코어를 기반으로 하고 또한 AMP(Asymmetric Multi-Processing) 방식을 이용한 파티션 구조에 적용되어야 한다. 본 논문에서는 멀티코어 기반 supervised-AMP 가상화 방식의 파티션 운영체제를 이용한 분산 복구 블록 설계 기법을 제안한다. 또한 제안된 설계 기법의 유용성을 보이기 위하여 항공기용 비행제어시스템 시뮬레이션을 이용한 사례 연구를 보인다.
High efficiency video coding (HEVC) employs quadtree coding tree unit (CTU) structure to improve its coding efficiency, but at the same time, it also requires a very high computational complexity due to its exhaustive search processes for an optimal coding unit (CU) partition. With the aim of solving the problem, a fast CU size decision optimal algorithm based on neighborhood prediction is presented for HEVC in this paper. The contribution of this paper lies in the fact that we successfully use the partition information of neighborhood CUs in different depth to quickly determine the optimal partition mode for the current CU by neighborhood prediction technology, which can save much computational complexity for HEVC with negligible RD-rate (rate-distortion rate) performance loss. Specifically, in our scheme, we use the partition information of left, up, and left-up CUs to quickly predict the optimal partition mode for the current CU by neighborhood prediction technology, as a result, our proposed algorithm can effectively solve the problem above by reducing many unnecessary prediction and partition operations for HEVC. The simulation results show that our proposed fast CU size decision algorithm based on neighborhood prediction in this paper can reduce about 19.0% coding time, and only increase 0.102% BD-rate (Bjontegaard delta rate) compared with the standard reference software of HM16.1, thus improving the coding performance of HEVC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.