• Title/Summary/Keyword: Particulate nitrite

Search Result 10, Processing Time 0.025 seconds

Simultaneous Measurements of Gaseous Nitrous Acid and Particulate Nitrite Using Diffusion Scrubber/Steam Chamber/Luminol Chemiluminescence

  • Chang, Won-Il;Choi, Jung-Ho;Hong, Sang-Bum;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1525-1532
    • /
    • 2008
  • An instrument was developed for the simultaneous determination of gas- and aerosol-phase nitrous acid (HONO). Gaseous HONO (HONO(g)) was sampled by a diffusion scrubber and particulate nitrite ($NO_2\;^-$(p)) was collected by a particle growth chamber. The collected samples were analyzed in time-sharing manner, based on the peroxynitrite-induced luminol chemiluminescence. The automated system was found to be sensitive with 13 pptv of detection limit, fast with 4 min. of sampling frequency, and simple and affordable to construct and operate. The system was optimized by adjusting the experimental parameters. The system was applied to the field measurement of gas- and particle-phase HONO during the springtime of 2004 in Gwangju, South Korea. HONO(g) concentrations varied diurnally from 200 pptv around 3 P.M. to 800 pptv at 5 A.M. The variation of $NO_2\;^-$(p) was not significant with the maximum of 240 pptv at 11 P.M. and the minimum of 170 pptv at 4 P.M., not displaying distinct characteristics.

Removal of Nitrate and Particulate from Groundwater with Two stage Biofilter system (2단 생물막여과 탈질시스템에서 지하수의 질산성질소 및 입자제거특성)

  • Lee, Moo-Jae;Park, Sang-Min;Jun, Hang-Bae;Kim, Kong-Soo;Lim, Jeoung-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.669-675
    • /
    • 2005
  • Biological nitrate removal from groundwater was investigated in the biofilters packed with both gravel/sand and plastic media. Removal of particles and turbidity were also investigated in the 2-stage biofilter system consisted of biofilter and subsequent sand filter. In the single biofilter packed with gravel and sand, nitrate removal efficiency was dropped with the increase of filtration velocity and furthermore, nitrite concentration increased up to 3.2 mg-N/L at 60 m/day. Denitrification rate at the bottom layer below 25 cm was faster 8 times than upper layer in the up-flow biofilter. Nitrite build-up, due to the deficiency of organic electron donors, occurred at the upper layer of bed. Besides DO concentration and organic carbon, contact time in media was the main factor for nitrate removal in a biofilter. The most of the effluent particles from biofilter was in the range from 0.5 to $2.0{\mu}m$, which resulted in high turbidity of 1.8 NTU. However, sand filter followed by biofilter efficiently performed the removal of particles and turbidity, which could reduce the turbidity of final filtrate below 0.5 NTU. Influent nitrate was removed completely in the 2-stage biofilter and no nitrite was detected.

Studies on Chemical and Biological Processes in the Keum River Estuary, Korea 1. The Cycle of Dissolved Inorganic Nitrogen : General Considerations (금강 하구에서의 화학적, 생물학적 제과정에 관한 연구 1. 질소계 화합물의 순환 : 전반적 고찰)

  • 김경렬;기준학
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.191-206
    • /
    • 1987
  • Keum River discharges 6.4billion tons of fresh water annually into the Yellow Sea. More than 60% of the total discharge is concentrated in summer, differentiating distinct low-discharge and high-discharge periods for the estuarine environment. The concentration of SPM(Suspended Particulate Matter) is, in general, very high, except sometime during rainy season, and turbidity maximum is often observed, especially during spring-tides(Lee and Kim, 1987).

  • PDF

Seasonal and Spatial Variations of Nutrient Fluxes in the Intertidal Flat of Keunso Bay, the Yellow Sea (서해 근소만 갯벌에서 영양염 플럭스의 계절 변화)

  • Kim, Kyung-Hee;Kim, Dong-Seon
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.225-238
    • /
    • 2008
  • In order to investigate the effects of intertidal sediments on the nutrient cycle in coastal environments, the benthic fluxes of ammonium, nitrate, nitrite, phosphate, and silicate at two stations on the intertidal flat of Keunso Bay were determined during each season. The efflux of ammonium was observed at S1 and resulted from the diffusion of remineralized ammonium and acceleration caused by the bioirrigation of macrofauna. The influx of ammonium at S2 was probably due to nitrification in the water column. The influx of nitrate was observed at both stations during all seasons, indicating that the nitrate in the pore water was removed by denitrification. Vigorous bioirrigation led to the efflux of dissolved inorganic nitrogen (DIN) at S1, whereas the influx of DIN at S2 was predominantly caused by denitrification. Contrary to the diffusive and bio-irrigated release of remineralized phosphate from the sediment at S1, the influx of phosphate was observed at S2, which may be attributable to adsorption onto iron oxides in the aerobic sediment layer. Silicate, which is produced by the dissolution of siliceous material, was mostly released from the sediment by molecular diffusion and bioirrigation. However, the influx of silicate was observed at S2 during spring and winter, which was ascribed to adsorption by particulate matter or assimilation by benthic microphytes. The annual fluxes of DIN were 328 mmol $m^{-2}yr^{-1}$ at S1 and -435 mmol $m^{-2}yr^{-1}$ at S2. The annual fluxes of phosphate were negative at both sites (-2.8 mmol $m^{-2}yr^{-1}$ at S1 and -28.9 mmol $m^{-2}yr^{-1}$ at S2), whereas the annual fluxes of silicate were positive at both sites (843 mmol $m^{-2}yr^{-1}$ at S1 and 243 mmol $m^{-2}yr^{-1}$ at S2).

The Distribution of Nitrogen and the Decomposition Rate of Organic Nitrogen in the Youngsan River and the Sumjin River, Korea (영산강과 섬진강 수계의 질소 분포와 유기질소 분해속도)

  • Kim, Jihye;Kim, Bomchul;Shin, Myoungsun;Kim, Jaiku;Jung, Sungmin;Lee, Yunkyoung;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.142-150
    • /
    • 2009
  • The distribution of organic nitrogen and its decomposition rate were studied in the Youngsan River and the Sumjin River system in Korea. Samples were conducted seasonally in June, August, December of 2006, and February of 2007. Collected samples were incubated for 20 days in a dark chamber ($20{\pm}1^{\circ}C$) and analyzed the changes of nitrogen form (particulate organic nitrogen, dissolved organic nitrogen, ammonia, nitrite, and nitrate). The mean total nitrogen (TN) concentration in the Youngsan River and the Sumjin River were $2.62mgN{\cdot}L^{-1}$ and $1.53mgN{\cdot}L^{-1}$, respectively. TN comprised of 65% DIN and 35% ON. The decomposition coefficients of organic nitrogen were also determined by two different fitting models. The decomposition rates of nitrogen species (TON, LPON, LDON, ${NH_4}^+$ and ${NO_2}^-$) ranged from 0.024 to $1.043day^{-1}$ in the Youngsan River and 0.008 to $0.693day^{-1}$ in the Sumjin River, respectively. The result of this study can give a guide to the selection of parameters in the calibration processes of water quality models.

Factors Controlling Temporal-Spatial Variations of Marine Environment in the Seomjin River Estuary Through 25-hour Continuous Monitoring (25시간 연속관측을 통한 섬진강 하구에서 시공간적 해양환경 변화 조절 요인)

  • Park, Mi-Ok;Kim, Seong-Soo;Kim, Seong-Gil;Kwon, Jinam;Lee, Suk-Mo;Lee, Yong-Woo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.314-322
    • /
    • 2012
  • In order to elucidate temporal variations of temperature, salinity, pH, dissolved oxygen (DO), suspended particulate matter (SPM), dissolved inorganic nutrients, and chlorophyll a, we performed 25-hour continuous monitoring in the Seomjin River Estuary in March (dry season) and July (rainy season) 2006. We also investigated spatial variations of marine environmental parameters across a saline gradient. In the Seomjin River Estuary, continuous monitoring results revealed that salinity variations were mainly affected by tidal cycle in the dry season and by river discharge in the rainy season. In the dry season, the spatio-temporal distribution of dissolved inorganic nutrient (nitrate, nitrite, and silicate) concentrations showed a good correlation with tidal cycle. While nutrient concentrations in rainy season showed not much variance in time. There were 6 and 4 times higher dissolved inorganic nitrogen and phosphorus concentrations in the rainy season than those in the dry season, respectively. Silicate concentration was 43 times higher in the rainy season than that in the dry season. Chlorophyll a concentration was higher in the dry season than that in the rainy season showing high nutrient concentrations. The results of this study, spatio-temporal variations of marine environmental factors are determined by both tidal cycle and river discharge. It seems that chlorophyll a concentration is related to the river discharge than dissolved inorganic nutrient distribution.

Semidiurnal Tidal Variation in Water Quality in Asan Bay during four Seasons (계절별로 조사한 조석에 따른 아산만의 수질 변동)

  • Kim, Se Hee;Shin, Yong Sik
    • Journal of Marine Life Science
    • /
    • v.5 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • The Asan Bay, which has semi-diurnal tide with macro-tidal range, is affected by both freshwater discharge from the sluice gates in the sea dikes and tidal seawater inputs from the Yellow sea. Understanding water quality change in response to tides is important since tides can impact the short-term variations in physical and chemical water properties as well as the response of biological properties. The diel variations in water quality were seasonally investigated at 2 hour intervals from a fixed station in the Asan Bay. In the results, water temperature and salinity consistently fluctuated in phase or out of phase with tidal height. Especially salinity was positively correlated with tidal height. The concentrations of total suspended solids were higher in the bottom water than in the surface and fluctuated greatly over the tidal cycle recording higher values at low tide than at high tide. Nitrite+nitrate levels also fluctuated out of phase with tidal height and correlated negatively with tidal height. Other nutrients also showed a similar pattern. The pattern was distinct in July when freshwater was discharged before the field sampling. The concentrations of organic materials, total nitrogen and total phosphorus greatly fluctuated over the tidal cycle and were generally out of phase with tidal height. Most materials except particulate organic forms were correlated with salinity indicating that freshwater inputs were sources for the materials similarly to the dissolved inorganic nutrients. The results suggest that water quality (except dissolved oxygen and pH) and nutrients including organic materials was largely affected by tides in the Asan Bay.

Chemical Mass Balance of Materials in the Keum River Estuary: 1. Seasonal Distribution of Nutrients (금강하구의 물질수지: 1. 영양염의 계절적 분포)

  • Yang, Jae-Sam;Jeong, Ju-Young;Heo, Jin-Young;Lee, Sang-Ho;Choi, Jin-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.71-79
    • /
    • 1999
  • As part of an on-going project investigating flux of materials in the Keum River Estuary, we have monitored seasonal variations of nutrients, suspended particulate matter (SPM), chlorophyll, and salinity since 1997. Meteorological data and freshwater discharge from the Keum River Dike were also used, Our goal was to answers for (1) what is the main factor for the seasonal fluctuation of nutrients in the Keum River Estuary? and (2) are there any differences in nutrient distributions before and after the Keum River Dike construction? Nitrate concentrations in the Keum River water were kept constant through the year. Whereas other nutrients varied with evident seasonality: high phosphate and ammonium concentrations during the dry season and enhanced silicate contents during the rainy season. SPM was found similar trend with silicate. During the rainy season, the freshwater discharged from the Keum River Dike seemed to dilute the phosphate and ammonium, but to elevate SPM concentration in the Keum Estuary. In addition, the corresponding variations of SPM contents in the estuarine water affected the seasonal fluctuations of nutrients in the Estuary. The most important source of the nutrients in the estuarine water is the fluvial water. Therefore, the distribution patterns of nutrients in the Estuary are conservative against salinity. Nitrate, nitrite and silicate are conservative through the year. The distribution of phosphate and ammonium on the other hand, display two distinct seasonal patterns: conservative behavior during the dry season and some additive processes during the rainy days. Mass destruction of freshwater phytoplankton in the riverine water is believed to be a major additive source of phosphate in the upper Estuary. Desorption processes of phosphate and ammonium from SPM and organic matter probably contribute extra source of addition. Benthic flux of phosphate and ammonium from the sediment into overlying estuarine water can not be excluded as another source. After the Keum River Dike construction, the concentrations of SPM decreased markedly and their role in controlling of nutrient concentrations in the Estuary has probably diminished. We found low salinity (5~15 psu) within 1 km away from the Dike during the dry season. Therefore we conclude that the only limited area of inner estuary function as a real estuary and the rest part rather be like a bay during the dry season. However, during the rainy season, the entire estuary as the mixing place of freshwater and seawater. Compared to the environmental conditions of the Estuary before the Dike construction, tidal current velocity and turbidity are decreased, but nutrient concentrations and chance of massive algal bloom such as red tide outbreak markedly increased.

  • PDF

Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench (침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석)

  • Yano, K.A.V.;Geronimo, F.K.F.;Reyes, N.J.D.G.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2019
  • Nutrients in stormwater runoff have raised concerns regarding water quality degradation in the recent years. Low impact development (LID) technologies are types of nature-based solutions developed to address water quality problems and restore the predevelopment hydrology of a catchment area. Two LID facilities, infiltration trench (IT) and infiltration planter (IP), are known for their high removal rate of nutrients through sedimentation and vegetation. Long-term monitoring was conducted to assess the performance and cite the advantages and disadvantages of utilizing the facilities in nutrient removal. Since a strong ionic bond exists between phosphorus compounds and sediments, reduction of total phosphorus (TP) (more than 76%), in both facilities was associated to the removal of total suspended solids (TSS) (more than 84%). The efficiency of nitrogen in IP is 28% higher than IT. Effective nitrification occurred in IT and particulate forms of nitrogen were removed through sedimentation and media filters. Decrease in ammonium- nitrogen (NH4-N) and nitrite-nitrogen (NO2-N), and increase in nitrate-nitrogen (NO3-N) fraction forms indicated that effective nitrification and denitrification occurred in IP. Hydrologic factors such as rainfall depth and rainfall intensity affected nutrient treatment capabilities of urban stormwater LID facilities The greatest monitored rainfall intensity of 11 mm/hr for IT yielded to 34% and 55% removal efficiencies for TN and TP, respectively, whereas, low rainfall intensities below 5 mm resulted to 100 % removal efficiency. The greatest monitored rainfall intensity for IP was 27 mm/hr, which still resulted to high removal efficiencies of 98% and 97% for TN and TP, respectively. Water quality assessment showed that both facilities were effective in reducing the amount of nutrients; however, IP was found to be more efficient than IT due to its additional provisions for plant uptake and larger storage volume.