• 제목/요약/키워드: Particulate nitrate

검색결과 94건 처리시간 0.024초

The Effects of Varying Sampling Flow Rates on the Measurements of Total Nitrate and Sulfate in Dry Acid Deposition

  • Park, Jong-Kil;Kim, Jo-Chun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E1호
    • /
    • pp.1-12
    • /
    • 2002
  • One technique for determining dry acid deposition fluxes involves measurement of time - averaged ambient concentrations of dry acid deposition species using filter packs (FP) coupled with estimates of mean deposition velocities for the exposure period. A critical problem associated with filter pack data comparisons between various field sampling networks is the use of diverse sampling flow rates and duration protocols. Field experiments were conducted to evaluate the effects of varying sampling flow rates, from 1.5 to 10 standard liters per minute, on total nitrate and sulfate measurements of specific dry acid deposition species . Collocated FP samplers were used to determine sampling and analysis data reproducibility and representativeness . Ambient air samples were simultaneously collected using groups of filter packs operated at various flow rates over identical 7 day periods. The species measured were sulfur dioxide, particulate sulfate , nitric acid and particulate nitrate. Statistical results (ANOVA; alpha level 5%) showed that neither the low nor high sampling flow rates caused a significant difference in the measurements of total sulfate and adjusted total nitrate (ATN) . However, it was concluded that for high flow rate sampling measurements, total nitrate (TN) could be affected during extended sampling durations because of potential nitric acid overloading and breakthrough. Although the previous workers (Costello, 1990; Quillian, 1990) used much higher sampling flow rates (~ 17 sLpm) than employed here, it was assumed that for a high loading (> 50$\mu\textrm{g}$ HNO$_3$) of nitric acid on the Nylon filters, a significant fraction (~10%) of nitric acid could pass through the Nylon filters and be collected on the carbonate impregnated filters. It was concluded that even at the highest sampling flow rate employed (10 sLpm) at the Cary Forest site, nitric acid breakthrough was less than 10% of the total HNO$_3$ collected. However, for a heavily polluted urban airshed or with longer sampling times , higher filter loadings could result in substantial nitric acid breakthrough and HNO$_3$concentrations would be underestimated.

서울시 부유분진증 질산암모늄 농도 (Concentration of NH$_4$NO$_3$ in TSP in Seoul Ambient Air)

  • 천만영;이영재;김희강
    • 한국대기환경학회지
    • /
    • 제10권2호
    • /
    • pp.130-136
    • /
    • 1994
  • Concentration of volatile particulate nitrate(NH$_4$NO$_3$) in TSP in ambient air was determined from Feb. to Oct 1993. Sampling was carried out using a two-stage Andersen air sampler at the top of a five-story building located at Kon- Kuk University in Seoul Concentration of NH$_4$NO$_3$ in TSP was measured by Pyrolysis of sample filters at 16$0^{\circ}C$ for 1hr. Concentration of NH$_4$NO$_3$ was higher in winter time compared with that in summer time. Also, concentration of NH$_4$NO$_3$ was higher in fine particles compared with that in coarse particle. The range of NH$_4$NO$_3$concentration was between 2.99 and 9.86 $\mu\textrm{g}$/㎥. Weight fraction of NH$_4$NO$_3$ in total particulate nitrate was 31.1~59.5%, and weight fraction of NH$_4$NO$_3$ in YSP was 2.1~11.2%.

  • PDF

서울지역의 시정 장애 요인에 관한 연구 (On the Origin of Visibility Degradation in Seoul)

  • 윤순창;이강웅
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.229-236
    • /
    • 1998
  • Visibility is a good indicator of comprehensive alto quality. The prevailing visibility in Seoul is no better than the past although the average concentration of SO2 and TSP (total suspended particulate) has decreased quite significantly in the past decade, owing to the government efforts to reduce the emission. Then, a question arises why visibility has not been improved. In order to answer this question we have investigated which components of air pollutants are most responsible for the visibility degradation in Seoul. Analysis on the visibility vs the aerosol sixte distribution measured by an optical particle counter shows that the particles of the size interval between 0.5mm and 2.5mm are most responsible for the visibility degradation. Among the criteria air Pollutants, NOB concentration is found to be moot responsible, rather than PM10. ton analysis of the particulate collected by a high volume sampler shows that the nitrate component increases more significantly than other ions when visibility becomes very poor. Therefore, we conclude that the major causes of visibility degradation in Seoul are the increase of NOB, nitrates and the particles of the size range between 0.5mm and 2.5mm.

  • PDF

환경 대기중에서 Nitrate의 생성에 관한 연구(II) (A Study on the Formation of Nitrate in Atmosphere(II))

  • 천만영;이영재;김희강
    • 한국대기환경학회지
    • /
    • 제9권3호
    • /
    • pp.216-221
    • /
    • 1993
  • This study was carried out to determine the concentration of gaseous nitrate$(HNO_3)$ particulate nitrate$(NO_3^-)$ and conversion rate of NOx to nitrate in atmosphere in Seoul from Oct 1991 to July 1992. The average concentration of gaseous nitrate in daytime(09:00 - 17:00) was 9.93, 3.37, 7.40 and 10.40$\mug/m^3$ and, in highttime was 6.21, 7.31, 4.79 and 3.86$\mug/m^3$ respectively. The concentratin of $HNO_3$ was greater in summer and daytime than winter and nighttime. But the concentration of $NO_3^-$ was greater in winter and nighttime than in summer and daytime. The average conversion rate of NOx to $HNO_3$(Fn) indaytime was 13.18, 3.78, 9.13 and 23.13% and, in nighttime was 3.06, 1.37, 1.70 and 8.72% during fall, winter, spring and summer respectively. But the average conversion rate of NOx to $NO_3^-$(Fn') in daytime was 5.79, 5.77, 2.63 and 3.90% and in nighttime was 5.95, 6.51, 3.25 and 4.84% respectively. The average conversion rate of NOx to total nitrate $(HNO_3 + NO_3^-)$(Fn') was 12.72, 7.81, 7.82 and 18.40% respectively. The average conversion rate of NOx to $HNO_3$(Fn) was greater than $NO_3^-$(Fn') about 1.6 times.

  • PDF

경사지 밭토양에서의 양분유실량 평가 (Assessments of the Nutrient Losses in the Sloped Farm Land)

  • 정필균;엄기철;하상건;장용선;허승오
    • 한국토양비료학회지
    • /
    • 제42권Spc호
    • /
    • pp.47-50
    • /
    • 2009
  • 본 연구는 경사지 밭 토양에서의 양분유실로 인한 지표수와 지하수 오염의 주요 요인인 인산과 질소에 대하여 평가하였다. 유실된 토양 중에서 흡착된 인산은 용해되어 천천히 조류들의 영양원으로 이용되고, 물에 용해된 질소와 인산은 부영양화의 주요 요인으로 조류들에 의하여 즉시 영양원으로 이용된다. 질소의 유실은 유실된 총량의 약 90%가 유출수와 침투수에 의하여 유실되고, 인산의 유실은 유실된 총량의 약 60% - 67%가 유실된 토양 입자에 흡착되어 유실되었다. 대체적으로 환경적으로 합리적인 토양 및 물 관리에 의한 적절한 토지이용, 시비관리 및 토양 보전농법은 토양 및 양분유실을 감소시킬 수 있고, 지표수와 지하수의 수질을 개선할 수 있다.

부산지역 미세먼지 최근 경향 분석 - 수도권과 비교연구 (I) (Analysis of Recent Trends of Particulate Matter Observed in Busan - Comparative Study on Busan vs. Seoul Metropolitan Area (I))

  • 김종민;조유진;양금희;허국영;김철희
    • 한국환경과학회지
    • /
    • 제29권2호
    • /
    • pp.177-189
    • /
    • 2020
  • We analyzed the recent characteristics of Particulate Matter (PM) including PM10 (PM with diameter of less than 10 ㎛) and PM2.5 (PM with diameter of less than 2.5 ㎛) observed in Busan metropolitan area, and compared them with those measured in Seoul metropolitan area. This analysis includes the monthly, seasonal, and annual variations and differences, in emissions and chemical compositions observed in both Busan and Seoul areas. Synoptic meteorological conditions were investigated at the time when high PM concentrations occurred in each of the two areas. The results showed clearly decreasing trends of annual mean concentrations with strong seasonal variations: lower in summer and higher in winter in both areas. In comparison with Seoul, the seasonal variation in Busan demonstrated relatively lower, but showed greater summer fluctuations than in Seoul metropolitan area. This is implying the importance of secondary generation of PM in summer via active photochemical reaction in Busan area. In high concentration days, Busan's chemical composition of sulfate was higher than that of nitrate in summer, whereas nitrate was higher than sulfate in Seoul. The ratios of NO3- to SO42-(N/S ratio) showed lower in Busan approximately by a factor of 1/2(half of N/S ratio) in Busan compared with that in Seoul. Others such as synoptic characteristics and emission differences were also discussed in this study.

Distribution and Transport of Suspended Particulate Matter, Dissolved Oxygen and Major Inorganic Nutrients in the Cheju Strait

  • Suk, Moon-Sik;Hong, Gi-Hoon;Chung, Chang-Soo;Chang, Kyung-Il;Kang, Dong-Jin
    • Journal of the korean society of oceanography
    • /
    • 제31권2호
    • /
    • pp.55-63
    • /
    • 1996
  • Distribution of suspended particulate matter, dissolved oxygen and major inorganic nutrients along a meridional section ($126^{\circ}$ 33' E) in the Cheju Strait is described along with the hydrographic and current data obtained during April 25-27, 1995. The current measurements was conducted using a vessel-mounted Acoustic Doppler Current Profiler (ADCP). Repeated coverage along an ADCP transect during 25 hours allows to calculate the daily mean along- and cross-strait currents. Measured material concentrations and the mean current speed were used to estimate the flux density (cencentration times current speed) of materials. Two types of depth distibution of flux densities were observed. for nitrate and suspended particulate matter, the depth distribution pattern of materials determines those of flux densities. However, flow patterns determine those of flux densities for dissolved oxygen, phosphate and silicic acid. The total along-strait water volume transport is about 0.3 Sv (1Sv $10^{6}$ $m^{3}/s^{-1}$). The total along-strait material transports are estimated to be 3.1 $${\times} $10^{5}$ $g/s^{-1},$ 2.4 ${\times}$ $10^{6}\;g/s^{-1},$ 7.I ${\times}$ $10^{2}\;mol/s^{-1},$ 3.I ${\times}$ $10\;mol/s^{-1},$ 1.7 ${\times}$ $10^{3}\;mol/s^{-1}$ for suspended particulate matter, dissolved oxygen, nitrate ion, silicic acid and phosphate ion, respectively.

  • PDF

Size Distribution Characteristics of Particulate Mass and Ion Components at Gosan, Korea from 2002 to 2003

  • Han J.S.;Moon K.J.;Lee S.J.;Kim J.E.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E1호
    • /
    • pp.23-35
    • /
    • 2005
  • Size distribution of particulate water-soluble ion components was measured at Gosan, Korea using a micro-orifice uniform deposit impactor (MOUDI). Sulfate, ammonium, and nitrate showed peaks in three size ranges; Sulfate and ammonium were of dominant species measured in the fine mode ($D_{p} < 1.8 {\mu}m$). One peak was observed in the condensation mode ($0.218\sim0.532{\mu}m$), and the other peak was obtained in the droplet mode ($0.532\sim1.8{\mu}m$). Considering the fact that the equivalent ratios of ammonium to sulfate ranged from 0.5 to 1.0 in these size ranges, it is inferred that they formed sufficiently neutralized compounds such as ($NH_{4})_{2}SO_{4} and (NH_{4})_{3}H(SO_{4})_{2}$ during the long-range transport of anthropogenic pollutants. On the other hand, nitrate was distributed mainly in the coarse mode ($3.1\sim6.2{\mu}m$) combined with soil and sea salt. Two sets of MOUDI samples were collected in each season. One sample was collected when the concentrations of criteria air pollutants were relatively high, but the other represented relatively clean air quality. The concentrations of sulfate and ammonium particles in droplet mode were the highest in winter and the lowest in summer. When the air quality was bad, the increase of nitrate was observed in the condensation mode ($0.218\sim0.282{\mu}m$). It thus suggests that the nitrate particles were produced through gas phase reaction of nitric acid with ammonia. Chloride depletion was remarkably high in summer due to the high temperature and relative humidity.

금강 하구에서의 화학적, 생물학적 제과정에 관한 연구 1. 질소계 화합물의 순환 : 전반적 고찰 (Studies on Chemical and Biological Processes in the Keum River Estuary, Korea 1. The Cycle of Dissolved Inorganic Nitrogen : General Considerations)

  • 김경렬;기준학
    • 한국해양학회지
    • /
    • 제22권3호
    • /
    • pp.191-206
    • /
    • 1987
  • 금강을 통하여 연간 평균 64억톤의 담수가 유입되는 금강 하구(Keum River Estuary)는 총 유출량의 60%이상이 여름에 집중되어, 건기(low-descharge period) 및 우기(high-discharge period)가 뚜렷이 구별되는 강하구 환경(estuarine environment)을 이루고 있다. 금강 하구는 우기중 일부를 제외한 전 기간에서 높은 SPM(Suspended Particulate Matter)이 형성되기도 한다(Lee and Kim, 1987). Photosynthesis는, 금강하구가 금강, 생활 하수등을 통한 공급으로 영양염들이 항상 충분히 존재하는 환경임에도 불구하고, SPM의 농도가 매우 낮았던 우기중에만 활 발히 진행되었다. 이는 금강하구에 있어서, SPM의 농도가 빛에너지 차단 등을 통하 여 일차 생산 활동의 진행 여부를 결정짓는 가장 중요한 요인으로 작용하고 있기 때문인 것으로 생각된다. Nitrification은 건기중 무기질 화합물들과 관련되어 진행되 는 가장 중요한 respiration 작용으로서, SPM이 높은 지역에서 활발히 진행되고 있 었으며, turbidity maximum형태에 따라 크게 두가지 형(ammonia-nitrite산화과정 및 ammonia-nitrate 산화 과정)이 관측되었다.Nitrate생성은 turbidity maximum이 매우 좁은 지역안에 형성되었던 시기에 이 구간내에서 관측되었고, Nitrate 생성은 turbidity maximum 이 강하구 전역에 걸쳐 넓게 형성되었던 시기에 강 하구 전역 에서 진행되고 있었다. 이것은 수괴가 높은 SPM지역에 머무를 수 있는 시간에 따 라 반응 형태가 좌우되어, 이 시간이 짧은 경우에 nitrete까지, 충분히 긴 경우에는 nitrate까지 ammonia가 산화되기 때문에 나타난 결과로 생각된다.

  • PDF

팔당호로의 질소와 황성분 침적 측정 (Measurement of Nitrogen and Sulfur Deposition to Lake Paldang)

  • 김영성;진현철
    • 한국대기환경학회지
    • /
    • 제21권1호
    • /
    • pp.39-48
    • /
    • 2005
  • Nitrogen and sulfur deposition was measured on Lake Pal dang from March 2002 to October 2003. Wet and dry depositions were separately measured using wet- and dry-only samplers, respectively. In order to measure the dry deposition to the water body, a dry deposition sampler composed of three pans filled with pure water, called the deposition water, was used. Since ammonium was generally in excess in ambient air, more than half of ammonium was present in the gaseous form. Ammonium concentration was also generally higher than the sum of major anion concentrations in the deposition water because gaseous species were much easily deposited than the species in fine particles. Nevertheless, the contribution of gaseous ammonia to the deposition of ammonium was not high as well as that of particulate ammonium while the contribution of gaseous nitric acid was much higher than that of particulate nitrate. Annual wet deposition fluxes of nitrogen and sulfur were five and six times higher than their dry deposition fluxes, respectively. Except for ammonium, the dry deposition flux estimated in the present work was a half of the previous results. This was mainly caused by much smaller dry deposition velocities over the water than over the ground.