• 제목/요약/키워드: Particulate emission factor

검색결과 61건 처리시간 0.026초

화력발전소의 대기오염물질 배출계수 산정 연구 (A Study on the Estimation of Air Pollutants Emission Factors in Electric Power Plants)

  • 김대곤;엄윤성;홍지형;이석조;석광설;이대균;이은정;방선애
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.281-290
    • /
    • 2004
  • The main purpose of this study was to characterize the air pollutants emission factors in electric power plant (EPP) using fossil fuels. The electric power plant is a major air pollution source, thus knowing the emission characteristics of electric power plant is very important to develop a control strategy. The major air pollutants of concern from EPP slacks are particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO) and heavy metals. Throughout the study, the following results are estimated - PM : 8.671E-05 ∼ 8.724E+01 PM emission (kg) per fuel burned (ton) - SOx : 4.149E-04∼7.877E+01 SOx emission (kg) per fuel burned (ton) - NOx 1.578E-02∼9.857E+00 NOx emission (kg) per fuel burned (ton) - CO : 3.800E-04∼1.291E+00 CO emission (kg) per fuel burned (ton) - Hg : 1.220E+01∼3.108E+02 Hg emission (mg) per fuel burned(ton) From the statistical analysis by Wilcoxon signed ranks test between the emission factors of ours and U.S. EPA's, we can yielded that : p 〉0.05.

유류오염부지 시범적용을 통한 실외공기 오염물질흡입 노출경로에 대한 부지특이적 노출량 산정 방안에 대한 고찰 (Study on the Exposure Assessment Methodology for Outdoor Air Inhalation Pathways in Site-specific Risk Assessment and Its Application in a TPH-contaminated Site)

  • 김상현;정현용;정부윤;노회정;김현구;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권3호
    • /
    • pp.65-73
    • /
    • 2020
  • Exposure assessment methodology for outdoor air inhalation pathways (i.e., inhalation of volatile compounds and fugitive dust in outdoor air) was investigated. Default values of several parameters currently used in Korea (e.g., Q/C; inverse value of concentration per unit flux, and frs; soil fraction in PM10) may not be suitable and lack site-specificity, as they have been adopted from the risk assessment guidance of the United States or the Netherlands. Such limitation can be addressed to a certain degree by incorporating the volatilization factor (VF) and the particulate emission factor (PEF) with Box model. This approach was applied to an exposure assessment of a site contaminated with petroleum hydrocarbons in Korea. The result indicated that the suggested methodology led to more accurate site-specific exposure assessment for outdoor inhalation pathways. Further work to establish methodology to determine site-specific Q/C values in Korea needs to be done to secure the reliability of the exposure assessment for outdoor air inhalation pathways.

Air Pollutant Emission Factors from Composite Wood Products Manufacturing in Korea

  • Lee, Eun-Jung;Jung, Dong-Il;Kim, Dai-Gon;Lee, Sue-Been;Kang, Kyoung-Hee;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제23권E2호
    • /
    • pp.57-65
    • /
    • 2007
  • In Korea, there is a general lack of information available on air emissions from industry. The reasons for this include the lack of regulatory requirements for emission monitoring, limited information on specific industries, and difficulties in monitoring certain sources. This paper presents the first detailed air pollutant emission factors from composite wood product manufacturing in Korea. This study introduced emission factors for wood-based panels such as plywood, particle board (PB), and medium density fiberboard (MDF). The emission factors of particulate matters (PM) and hazardous air pollutants (HAPs) from MDF were higher than that from other wood products. The concentration of total volatile organic compounds (TVOCs) for hot press from wood-based panels was higher than drying or gluing processes. Emissions data from NPIP were compared to the data from the suggested emission factors in this study and the US EPA's. The data from our emission factors were closer to the observed results than the data using the US EPA's emission factor.

활동도를 이용한 2009년도 부산항 선박배출량 산정에 관한 연구 (Estimate of Ships Emission in Busan Port during 2009 Based on Activity)

  • 박두열;황철원;정창훈;손장호
    • 한국환경과학회지
    • /
    • 제20권5호
    • /
    • pp.599-610
    • /
    • 2011
  • Emission of air pollutants such as nitrogen oxides ($NO_x$), hydrocarbons (HC), $SO_2$, and particulate matter (PM) and $CO_2$ from ship during 2009 in Busan port was estimated based on activity-based method. The significant fraction (> 50%) of ship emission resulted from container and general cargo ships. Emission at port operation mode was the most dominant compared to at sea and maneuvering modes. Emission at North port was the largest source of air pollutants among ports. The magnitudes of air pollutants $NO_x$, $SO_2$, HC, $CO_2$, and PM in Busan port were $8.7{\times}10^3$, $8.23{\times}10^3$, $0.35{\times}10^3$, $4.86{\times}10^6$, and $0.67{\times}10^3$ ton/yr, respectively. The ratio of $NO_x$ to VOC is about 25. Our ship emission estimate is 2 times higher than that in CAPSS emission inventory.

FE-SEM/EDX 분석법을 이용한 석탄화력발전소에서 배출되는 입자상물질의 확인자 개발 (Identification Factor Development of Particulate Matters Emitted from Coal-fired Power Plant by FE-SEM/EDX Analysis)

  • 박정호
    • 한국환경과학회지
    • /
    • 제26권12호
    • /
    • pp.1333-1339
    • /
    • 2017
  • Coal-fired power plants emit various Particulate Matter(PM) at coal storage pile and ash landfill as well as the stack, and affect the surrounding environment. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray analyzer(FE-SEM/EDX) were used to develop identification factor and the physico-chemical analysis of PM emitted from a power plant. In this study, three samples of pulverized coal, bottom ash, and fly ash were analyzed. The pulverized coal was spherical particles in shape and the chemical composition of C-O-Si-Al and C/Si and C/Al ratios were 200~300 on average. The bottom ash was spherical or non-spherical particles in shape, chemical composition was O-C-Si-Al-Fe-Ca and C/Si and C/Al ratios were $4.3{\pm}4.6$ and $8.8{\pm}10.0$. The fly ash was spherical particles in shape, chemical composition was O-Si-Ai-C-Fe-Ca and C/Si and C/Al ratios were $0.5{\pm}0.2$ and $0.8{\pm}0.5$.

겨울철 서울도심의 대기중 부유분진의 특성 (The Characteristics of Suspended Particulate Matters in Downtown Seoul During Winter Period)

  • 김신도;김종호;이정주
    • 한국대기환경학회지
    • /
    • 제8권2호
    • /
    • pp.105-111
    • /
    • 1992
  • The characteristics of suspended particulate matters(dust) in Seoul had been studied. The effects of various environmental factors, such as passengers, motor vehicles, wind velocity, wind direction, temperature and humidity were examined during the study period. It was shown that the dust emission occurred through the heating was the major source, and the contribution of passengers and motor vehicles was relatively negligible during the night. It was also revealed that the number concentration between $0.5{\mu}m$ and $2.0{\mu}m$ was increased due to the attachment among the dusts and mists by the increased humidity during the night. Considering the fact that the particles larger than $2{\mu}m$ take the most part of weight concentration, it was suggested that the PM-10 method which considered respirable particle as a weighting factor should be adapted in the evaluation air quality.

  • PDF

수원지역 입자상 오염물질의 오염원 기여도의 추정 (Estimation of Source Contribution for Ambient Particulate Matters in Suwon Area)

  • 이태정;김동술
    • 한국대기환경학회지
    • /
    • 제13권4호
    • /
    • pp.285-296
    • /
    • 1997
  • The suspended particulate matters had been collected on quartz fiber fiters by a cascade impactor having 9 size stages for 4 years (Sep. 1991 to Dec. 1995) in Kyung Hee University-Suwon Campus. Membrane filters were used to collected the particulate matters on each stage. The weight concentration on each stage was obtained by a microbalance and further chemical element levels were determined by an x-ray fluorescence system. Based on these chemical information, our study focused on applying the target transformation factor analysis (TTFA), a receptor model, to identify aerosol sources and to apportion quantitatively their mass contribution. There are total of 63 ambient data sets. Each data set consists of the 8 size-ranged subdata sets characterized by 16 elemental variables. By the results, four to five sources were extracted from each size range and some sources reappeared in other size ranges. Then total of 8 source profiles were statistically generated from all the ranges, such as oil burning source, soil source, field burning source, gasoline related source, coal burning source, marine source, glass related source, and unknown sources. Apportioning aerosol mass to each source was intensively examined by investigating emission inventories near the study area. The results showed that soil particle source was the most significant contributor. However, coal and oil burning sources were the major anthropogenic ones. The study finally proposed some air quality control strategies to achieve the clean air quality in Suwon area.

  • PDF

중성자 방사화분석법과 Gent SFU 샘플러를 이용한 도시의 농촌지역의 대기분지($PM_{10}$)관측 연구 (Study on Airborne Particulate Matter ($PM_{10}$) Monitoring in Urban and Rural Area by Using Gent SFU Sampler and Instrumental Neutron Activation Analysis)

  • 정용삼;문종화;김선하;박광원;강상훈
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.453-467
    • /
    • 2000
  • The aim of this research is to collect and characterize fine particles (FPM:$\leq$2.5${\mu}{\textrm}{m}$) and coarse particles (CPM: 2.5~10${\mu}{\textrm}{m}$) using a low volume air sampler provided by the IAEA, at urban (Taejon) and rural area(Wonju) for a period of about two years(April 1996 to May 1998) and to promote a use of nuclear analytical techniques for air pollution studies. For the collection of airborne particulate matter (PM(sub)10), the Gent stacked filter unit sampler and polycarbonate membrane filters were employed. The concentration of trace elements in collected APM samples were determined byu instrumental Neutron Activation Analysis. For validation of the analytical data, internal quality control were implemented by using both the comparison of the analytical results of standard reference materials(NIST SRM 1648) and interlaboratory comparison for proficiency test (NAT-3). The standard uncertainty was less than 15% and Z-score of two samples were within $\pm$1. The monitoring of (PM(sub)10) mass concentration and elemental concentrations were carried out weekly. The average mass concentration of (PM(sub)10) in urban and rural areas were 59.2$\pm$36.5$\mu\textrm{g}$/㎥ and 41.4$\pm$23.7$\mu\textrm{g}$/㎥, respectively. To investigate the emission source, the enrichment factors were calculated for the fine and coarse particle fractions at two sites, respectively and these values were classified for anthropogenic and soil origin elements.

  • PDF

목재 펠릿 난로와 보일러 사용에 의한 대기오염물질과 블랙카본의 배출 특성 (Emission Characteristics of Air Pollutants and Black Carbon from Wood-pellet Stove and Boiler)

  • 박성규;유근정;김대근;김동영;장영기;전의찬
    • 한국기후변화학회지
    • /
    • 제6권1호
    • /
    • pp.41-47
    • /
    • 2015
  • This study was carried out simulating domestic utilization conditions of a wood pellet stove and a wood pellet boiler in order to determine emission factors (EFs) of macro-pollutants, i.e., carbon monoxide, nitrogen oxides, sulfur oxides, ammonia, particulate matters (total suspended particulate, $PM_{10}$, $PM_{2.5}$, black carbon) and trace pollutants (i.e., ten different volatile organic compounds). The composite pollutants EFs for the pellet stove were: for TSP 4.58 g/kg, for $PM_{10}$ 3.35 g/kg, for $PM_{2.5}$ 2.48 g/kg, CO 119.23 g/kg, NO 14.40 g/kg, $SO_2$ 0.17 g/kg, TVOC 37.73 g/kg, $NH_3$ 0.02 g/kg and emissions were similar to the pellet boiler appliance: for TSP 4.73 g/kg, for $PM_{10}$ 3.41 g/kg, for $PM_{2.5}$ 2.63 g/kg, CO 161.51 g/kg, NO 13.67 g/kg, $SO_2$ 0.19 g/kg, TVOC 45.22 g/kg, $NH_3$ 0.02 g/kg.

화목 난로와 보일러 사용에 의한 대기오염물질과 블랙카본의 배출 특성 (Emission Characteristics of Air Pollutants and Black Carbon from Wood Stove and Boiler)

  • 박성규;최상진;김대근;김동영;장영기;전의찬
    • 한국기후변화학회지
    • /
    • 제6권1호
    • /
    • pp.49-54
    • /
    • 2015
  • Manually fed firewood burning appliances, i.e., stove and boiler, were tested in order to determine emission factors (EFs) of macro-pollutants, i.e., carbon monoxide, nitrogen oxides, sulfur oxides, ammonia, particulate matters (total suspended particulate, $PM_{10}$, $PM_{2.5}$, black carbon) and trace pollutants (i.e., ten different volatile organic compounds). The composite pollutants EFs for the wood stove were: for TSP 15.45 g/kg, for $PM_{10}$ 6.53 g/kg, $PM_{2.5}$ 4.16 g/kg, CO 175.49 g/kg, NO 1.58 g/kg, $SO_2$ 0.15 g/kg, TVOC 48.02 g/kg, $NH_3$ 0.02 g/kg and emissions were similar to the wood boiler appliance: for TSP 12.23 g/kg, for $PM_{10}$ 5.84 g/kg, $PM_{2.5}$ 3.66 g/kg, CO 146.74 g/kg, NO 1.42 g/kg, $SO_2$ 0.15 g/kg, TVOC 47.78 g/kg, $NH_3$ 0.01 g/kg.