• Title/Summary/Keyword: Particulate Matter Reduction

Search Result 184, Processing Time 0.027 seconds

Reduction Effect of Airborne Pollutants in Pig Building by Air Cleaner Operated with Plasma Ion (플라즈마 이온 방식의 공기정화기를 이용한 돈사내 공기오염물질 저감 효과)

  • Kim, Yoon-Shin;Kim, Ki-Youn;Cho, Man-Su;Ko, Moon-Suk;Ko, Han-Jong;Jung, Jin-Won;Oh, Mi-Seok;Youn, Baek;Kim, Jung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • This field study was performed to evaluate the efficiency of a plasma ion-operated air cleaner in temporal reduction of airborne pollutants emitted from a pig housing facility. In the case of gaseous pollutants, the plasma ion air cleaner was not effective in reducing levels of ammonia, hydrogen sulfide, nitrogen dioxide, or sulfur dioxide (p>0.05). In the case of particulate pollutants, however, the air cleaner was effective in reducing levels of particulate matter ($PM_{2.5}$ and $PM_1$) by 79(${\pm}6.1$) and 78(${\pm}3.0$)%, respectively. Unlike the case of these fine particle fractions, the reduction of total suspended particles (TSP) and $PM_{10}$ following treatment was almost negligible. In the case of biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi were relatively low at 22(${\pm}6.6$) and 25(${\pm}8.7$)%, respectively. Taken together, these results indicate that in terms of air pollutants released from this pig housing facility, the plasma ion air cleaner was primarily effective in reducing levels of $PM_{2.5}$ and $PM_1$.

Analysis of Chemical Compounds of Gaseous and Particulate Pollutants from the Open Burning of Agricultural HDPE Film Waste

  • Kim, Tae-Han;Choi, Boo-Hun;Kook, Joongjin
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.6
    • /
    • pp.585-593
    • /
    • 2021
  • Background and objective: Illegal open-air incineration, which is criticized as a leading source of air pollutants among agricultural activities, currently requires constant effort and attention. Countries around the world have been undertaking studies on the emission of heavy metal substances in fine dust discharged during the incineration process. A precise analytical method is required to examine the harmful effects of particulate pollutants on the human body. Methods: In order to simulate open-air incineration, the infrastructure needed for incineration tests complying with the United States Environmental Protection Agency (EPA) Method 5G was built, and a large-area analysis was conducted on particulate pollutants through automated scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS). For the test specimen, high-density polyethylene (HDPE) waste collected by the DangJin Office located in Choongcheongnam-do was used. To increase the identifiability of the analyzed particles, the incineration experiment was conducted in an incinerator three times after dividing the film waste into 200 g specimens. Results: Among the metal particulate matters detected in the HDPE waste incineration test, transition metals included C (20.8-37.1 wt%) and O (33.7-37.9 wt%). As for other chemical matters, the analysis showed that metal particulate matters such as metalloids, alkali metals, alkaline earth metals, and transition metals reacted to C and C-O. Si, a representative metalloid, was detected at 14.8-20.8 wt%, showing the highest weight ratio except for C and O. Conclusion: In this study, the detection of metal chemicals in incinerated particulate matters was effectively confirmed through SEM-EDS. The results of this study verified that HDPE waste adsorbs metal chemicals originating from soil due to its own properties and deterioration, and that when incinerated, it emits particulate matters containing transition metals and other metals that contribute to the excessive production and reduction of reactive oxygen species.

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Nitro-derivatives in Airborne Particulates by Using Two-dimensional High-performance Liquid Chromatography with On-line Reduction and Fluorescence Detection

  • Boongla, Yaowatat;Orakij, Walaiporn;Nagaoka, Yuuki;Tang, Ning;Hayakawa, Kazuichi;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.283-299
    • /
    • 2017
  • An analytical method using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection was developed for simultaneously analyzing 10 polycyclic aromatic hydrocarbons (PAHs) and 18 nitro-derivatives of PAHs (NPAHs). The two-dimensional HPLC system consists of an on-line clean-up and reduction for NPAHs in the 1st dimension, and separation of the PAHs and the reduced NPAHs and their FL detection in the 2nd dimension after column-switching. To identify an ideal clean-up column for removing sample matrix that may interfere with detection of the analytes, the characteristics of 8 reversed-phase columns were evaluated. The nitrophenylethyl (NPE)-bonded silica column was selected because of its shorter elution band and larger retention factors of the analytes due to strong dipole-dipole interactions. The amino-substituted PAHs (reduced NPAHs), PAHs and deuterated internal standards were separated on polymeric octadecyl-bonded silica (ODS) columns and by dual-channel detection within 120 min including clean-up and reduction steps. The limits of detection were 0.1-9.2 pg per injection for PAHs and 0.1-140 pg per injection for NPAHs. For validation, the method was applied to analyze crude extracts of fine particulate matter ($PM_{2.5}$) samples and achieved good analytical precision and accuracy. Moreover, the standard reference material (SRM1649b, urban dust) was analyzed by this method and the observed concentrations of PAHs and NPAHs were similar to those in previous reports. Thus, the method developed here-in has the potential to become a standard HPLC-based method, especially for NPAHs.

A Study on Particulate Matter Reduction Effects of Vegetation Bio-Filters by Airflow Volume (공조풍량별 식생바이오필터의 입자상 오염물질 저감효과 연구)

  • Choi, Boo Hun;Kim, Tae Han
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2021
  • As the influence of fine dust on society spreads gradually, the public's interest in indoor air is increasingly rising. Air-purifying plants are drawing keen attention due to their natural purifying function enabled by plant physiology. However, as their fine dust reduction mechanism is limited to adsorption only, vegetation bio-filters that optimize purification effects through integration with air-conditioning systems is rising as an alternative. In accordance with the relevant standard test methods, this study looked into the fine dust reduction assessment method by air-conditioning airflow volume that can be used for the industrial spread of vegetation bio-filters. In the case of PM10 at 300 ㎍/m3, it was in the order of EG-B(3,500CMH, 29 min.) < EG-A (2,500CMH, 37 min.) < CG(0CMH, 64 min.) for reaching the maintenance level (100 ㎍/m3) of publicly used facilities. For reaching the WHO Guideline(50 ㎍/m3) requirement, it was in the order of EG-B (51 min.) < EG-A (160 min.) < CG (170 min.). In the case of PM2.5, it was in the order of EG-B (26 min.) < EG-A (33 min.) < CG (57 min.) for reaching the maintenance level (50 ㎍/m3) of publicly used facilities. It was in the order of EG-B (48 min) < EG-A (140 min) < CG (158 min) for reaching the WHO Guideline (25 ㎍/m3) requirement. The findings from the analysis showed that fine dust can be reduced most efficiently when the system is operated at 3,500CMH level. The limitation of this study is that due to the absence of a way of assessing the stress of plants in vegetation bio-filters, generating optimal air-conditioning air flow of the relevant system and economics analysis against the existing facility-type air purification system have been clarified, which should be explored further though follow-up studies.

Experimental Study on Reduction of Particulate Matter and Sulfur Dioxide Using Wet Electrostatic Precipitator (습식전기집진기를 활용한 입자상 물질 및 황산화물 저감 성능에 관한 실험적 연구)

  • Kim, Jong-Lib;Oh, Won-Chul;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.898-904
    • /
    • 2021
  • This experimental study aims to investigate the use of a wet electrostatic precipitator as a post-treatment device to satisfy the strict emission regulations for sulfur oxides and particulate matter (PM). The inlet/outlet of a wet electrostatic precipitator was installed in a funnel using a marine four-stroke diesel engine (STX-MAN B&W) consuming marine heavy fuel oil (HFO) with a sulfur content of about 2.1%. Measurements were then obtained at the outlet of the wet electrostatic precipitator; an optical measuring instrument (OPA-102), and the weight concentration measurement method (Method 5 Isokinetic Train) were used for the PM measurements and the Fourier transform infrared (FT-IR; DX-4000) approach was used for the sulfur oxide measurements. The experimenst were conducted by varying the engine load from 50%, to 75% and 100%; it was noted that the PM reduction efficiency was a high at about 94 to 98% under all load conditions. Additionally, during the process of lowering the exhaust gas temperature in the quenching zone of the wet electrostatic precipitator, the sulfur dioxide (SO2) values reduced because of the cleaning water, and the reduction rate was confirmed to be 55% to 81% depending on the engine load.

Effect of Anion Generating Air Cleaner on the Components of ETS in a Closed Room (음이온 발생 공기청정기에 의한 밀폐된 실내공간에서의 ETS성분 변화)

  • Hwang, Keon-Joong;Rhee, Moon-Soo;Ra, Do-Young
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.124-130
    • /
    • 1998
  • This study was conducted to evaluate the ability of anion generating air cleaner to remove gases, vapor and particles from closed room contaminated with environmental tobacco smoke (ETS). The measurements covered particle sizes of 13.8-542.5nm, particle concentration, surface area, volumes UVPM, FPM, solanesol, and the following gases and vapor; carbon dioxide, carbon monoxide, nicotine, and 3-ethenylpyridine. Tobacco smoke was generated and mixed in a closed room in which the airflow rates were in the range of 0.00-0.04 m/s. The anion generating air cleaner was startedl and the decay rates for the gases, vapor and particles were measured, When the use of anion generating air cleaner, solid components of ETS, such as respirable suspended particle (RSP), utraviolet particulate matter (UVPM, fluorescent particulate matter (FPM) and solanesol was sharply decreased, and vapor phase components of ETS, such as nicotines 3-ethenylpyidine were modelately decreased by time elapse. Even the use of anion generation air cleaner, the decreasing rate of carbon dioxide concentration was similar with control, and the decreasing rate of carbon monoxide was slower than that of control. Our results indicated that the use of anion generting air cleaner had an effect on reduction of solid and vapor components from ETs, but it had no effect on gaseous components of ETS.

  • PDF

Characteristics of Exhaust Emissions Reduction by Oxidation Catalyst for Light-duty Diesel Engine (산화촉매에 의한 소형디젤엔진의 배출가스 저감특성)

  • 김선문;임철수;엄명도;정일래
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.5
    • /
    • pp.411-417
    • /
    • 2002
  • The purpose of this study is to evaluate the emission reduction characteristics depending on the formation of the catalyst which influences the development of the diesel oxidation catalyst (DOC) suitable for small-sized diesel engines. We also attempted to suggest the feasibility of it as an after-treatment device. The reduction efficiency of DOC for CO and HC was proportional to the contents of precious metals, and the particulate matter (PM) has been reduced as much as 53∼59%. The reduction rate of soluble organic fraction (SOF) by DOC attachment revealed 100%. The composition of sulfate in PM increased from 3%, 7∼11% by installation of DOC. It is described that increase of sulfate contributed to the production of PM. This result also showed that the SOF and sulfate have trade-off relationship.

Simultaneous NOx, PM Reduction by the Late Injection & Fast Combustion Type Premixed Combustion Technology (지연분사급속연소방식 예혼합연소 기술에 의한 NOx, PM의 동시저감)

  • 김장헌;최인용;김창일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.31-35
    • /
    • 2004
  • A new combustion strategy called LIFC(Late Injection & Fast Combustion) was developed for simultaneous reduction of particulate matter(PM) and nitrogen oxides(NOx) in exhaust emission of diesel engines, In this study, effects of injection timing and injection pressure under relatively high EGR rate were investigated. The experiments were conducted in a conventional engine over a range of commercial engine speed. The test engine could be operated in LIFC up to 2000rpm / bmep 5 bar condition with significant reduction of NOx and PM. The experimental results showed potential for the mechanism of the simultaneous reduction of NOx and PM from HSDI diesel engines.

The Effect of Biodiesel and Ultra Low Sulfur Diesel Fuels on Emissions in 11,000 cc Heavy-Duty Diesel Engine

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.870-876
    • /
    • 2005
  • It seems very difficult to comply with upcoming stringent emission standards in vehicles. To develop low emission engines, better quality of automotive fuels must be achieved. Since sulfur contents in diesel fuels are transformed to sulfate-laden particulate matters as a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. In general, flash point, distillation $90\%$ and cetane index are improved but viscosity can be worse in the process of desulfurization of diesel fuel. Excessive reduction of sulfur may cause to degrade viscosity of fuels and engine performance in fuel injection systems. This research focused on the performance of an 11,000 cc diesel engine and emission characteristics by the introduction of ULSD, bio-diesel and a diesel oxidation catalyst, where the bio-diesel was used to improve viscosity of fuels in fuel injection systems as fuel additives or alternative fuels.

Removal of S $O_{2}$ and NO by Dry Sorbent(II) - Efficiency of Cu-Ce and Cu-7Al - (건식법에 의한 이산화황과 산화질소의 제거(II) - Cu-Ce 및 Cu-7Al의 효율 -)

  • 신창섭
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 1993
  • Flue gas control systems for small-scale combustors must be designed to provide highly effective removal of three criteria pollutants (S $O_{2}$, N $O_{x}$ and particulate matter), and must be safe, reliable and small. These requirements make dry, regenerative clean-up process particularly attractive and this paper describes a new concept for integrated pollutant control : a filter comprised of layered, gas permeable membranes that act as an S $O_{2}$ sorbant, a N $O_{x}$ reduction catalyst and a particulate filter. A mixed metal oxide sorbent, Cu-Ce was used as a sorbent/catalyst and the activity was compared with Cu-7Al. The S $O_{2}$ removal eficiency of Cu-Ce was increased with temperature increase up to 500$^{\circ}$C and the catalytic activity for NO was higher than that of Cu-7Al. By the sulfation of Cu-Ce, the reduction activity was increased at the temperature higher than 350$^{\circ}$C. The regeneration of Cu-Ce was very fast and some amount of elemental sulfar was found.

  • PDF