• 제목/요약/키워드: Particulate Matter Reduction

검색결과 188건 처리시간 0.025초

선박 기인 대기오염물질 현황 및 저감 기술 소개 (Current Status of Air Pollutants from Ships and Reduction Technologies)

  • 박준성;함승호;강다영;박희연;박종관
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.135-142
    • /
    • 2024
  • There is a lot of concern around the world about air pollution from ships. The majority of air pollution from ships comes from fuel combustion. The combustion process produces various air pollutants such as carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM), each of which has adverse effects on people and is a major environmental problem. To prevent this, the International Maritime Organization (IMO) has strengthened the regulation of pollutant emissions through the Convention for the Prevention of Marine Pollution. This paper discusses the types of air pollutants emitted by ships, their current status, and the latest technologies to reduce emissions of NOx and SOx.

온도조건 비영향형 복합재생방식 DPF의 실차적용을 통한 대형디젤기관의 배출가스 특성 연구 (A Study on Exhaust Gas Characteristics of Heavy-duty Diesel Engines through Actual Vehicle Application of Non-influenced Temperature Condition Type Active Regeneration Method)

  • 이윤철;오상기
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.53-59
    • /
    • 2024
  • Cars are one of the main causes of air pollution in large cities, and 34.6% of domestic air pollution emissions come from mobile sources, of which cars account for 69.6%. In particular, the importance of nitrogen oxides (NOx) and particulate matter (PM), which are major pollutants in diesel vehicles, is increasing due to their high contribution to emissions. Therefore, in this study, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation was solved by applying a complex regeneration DPF that is not affected by temperature conditions to large diesel vehicles with higher driving time and engine displacement than small and medium-sized vehicles. And the feasibility of application to large diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the reduction efficiency test on the actual vehicle durability product, PM showed a reduction efficiency of 84% to 86%, and the reduction efficiency of gaseous substances showed a high reduction efficiency of over 90%. The actual vehicle applicability test was completed with three driving patterns: village bus vehicle, police car, and road-going construction equipment vehicle, and no device problems occurred until the end of the test. Both load and no-load smoke measurement results showed a smoke reduction efficiency of over 96%.

비도로 차량용 디젤엔진의 배기가스 저감에 관한 연구 (A Study of the Reduction of Diesel-Engine Emissions for Off-Road Vehicles)

  • 조규백;김홍석;강정호
    • 대한기계학회논문집B
    • /
    • 제35권6호
    • /
    • pp.577-583
    • /
    • 2011
  • 비도로 차량용 디젤엔진의 Tier 4 interim 규제를 만족하기 위하여 입자상물질과 질소산화물 배출량은 현행 규제 대비 각각 95%, 30% 저감되어야 하며, 입자상 물질을 저감하기위한 방법으로 디젤산화촉매, 부분유량 매연 여과장치 및 매연여과장치가 비도로 차량용 디젤엔진에 적용될 수 있다. 또한 질소산화물을 저감하기위해 배기가스 재순환방법, 선택적 환원촉매와 희박 질소산화물 포집장치 등이 적용될 수 있다. 본 연구에서는 56kW급 off-road 차량에서의 입자상물질과 질소산화물을 저감하기위해 매연여과장치와 고압루프 배기가스재순환 시스템이 연구되었다. 실험결과로서 디젤산화촉매와 매연여과장치는 입자상물질을 저감하는데 매우 효과적이었으며 낮은 배압과 함께 출력손실도 5%이내였다. 고압루프 배기가스재순환을 적용한 결과 중 저부하 조건에서 효과적으로 질소산화물을 저감하였으며 배기가스재순환율이 높을수록 질소산화물의 저감율도 증가하였다.

고전압 전극 두께와 집진판 간격에 따른 전기집진기의 미세먼지 집진효율 및 오존발생 특성 (Characteristics of particulate matter collection efficiency and ozone emission rate of an electrostatic precipitator by thickness of high-voltage electrode and distance of collection plates)

  • 이재인;우상희;김종범;이승복;배귀남
    • 한국입자에어로졸학회지
    • /
    • 제14권4호
    • /
    • pp.171-180
    • /
    • 2018
  • To optimize the shape of the electrostatic precipitator for the removal of particulate matter in subway environments, the wind-tunnel experiments were carried out to characterize collection efficiency and ozone emission rate. As a standardized parameter, power consumption divided by the square of flow velocity, was increased, the $PM_{10}$ collection efficiency increased. If the standardized parameter is higher than 1.0 due to high power consumption or low flow velocity, increase in thickness of electrodes from 1 to 2 mm, or increase in distance of collection plates from 5 to 10 cm did not change the $PM_{10}$ collection efficiency much. Increase in thickness of high-voltage electrodes, however, can cause decrease in $PM_{10}$ collection efficiency by 28% for low power consumption and high flow velocity. The ozone emission rate decreased as distance of collection plates became wider, because the ozone emission rate per unit channel was constant, and the number of collection channels decreased as the distance of collection plates increased. When the distance of collection plates was narrow, the ozone emission rate increased with the increase of the thickness of electrodes, but the difference was negligible when the distance of collection plates was wide. It was found that the electrostatic precipitator having a thin high-voltage electrodes and a narrow distance of collection plates is advantageous. However, to increase the thickness of high-voltage electrodes, or to increase the distance of collection plates is needed, it is necessary to increase the applied voltage or reduce the flow rate to compensate reduction of the collection efficiency.

LCZ 유형이 미세먼지에 미치는 영향에 관한 탐색적 연구 (An Exploratory Study on the Effect of LCZ Type on Particulate Matter)

  • 김연주;문한솔;정주철
    • 환경영향평가
    • /
    • 제32권5호
    • /
    • pp.338-352
    • /
    • 2023
  • 2019년 기준 우리나라는 OECD 38개 국가들 중에서 미세먼지가 가장 심각한 수준이며 같은 해 「재난 및 안전관리 기본법」을 개정하여 미세먼지를 사회재난으로 규정하였다. 현재 정부는 총 5대 분야, 42개 과제, 177개 세부과제로 구성된 미세먼지 관리 종합계획(2022년~2023년)을 마련하여 배출량 저감 목표를 달성하기 위해 노력하고 있다. 하지만 단순히 배출원으로만 저감대책을 세우는 것이 아니라, 도시의 다양한 공간 특성을 고려하여 대책을 마련할 필요가 있다. 따라서 본 연구에서는 부산광역시를 대상으로 도시의 건축물유형과 토지피복유형별 17개의 형태로 분류된 LCZ(Local Climate Zone)분류체계를 활용하여 도시의 형태를 분류하였고, IDW기법을 활용하여 연평균 PM10, PM2.5 농도를 매핑하였다. 또한, LCZ분류체계를 정량화하기 위해 Fragstats와 Moving window를 활용하였다. 마지막으로 상관분석과 회귀분석을 실시하여 LCZ분류체계와 PM10, PM2.5 간의 관계를 분석하였다. 그 결과, 건축물의 높이가 낮은 유형과 나무가 있는 녹지 유형은 PM10, PM2.5 농도에 긍정적인 영향을 주는 것을 확인할 수 있었다. 따라서 본 연구는 효율적인 공간계획에 기반한 미세먼지 저감 정책 수립을 위해 기초 자료로 활용될 것으로 기대된다.

인구구조 변동 추세를 반영한 미세먼지 노출에 의한 조기 사망자 추정 (Estimation of Premature Deaths due to Exposure to Particulate Matter (PM2.5) Reflecting Population Structure Change in South Korea)

  • 박정현;장용철;이종현
    • 한국환경보건학회지
    • /
    • 제49권6호
    • /
    • pp.362-371
    • /
    • 2023
  • Background: PM2.5 pollution has been a persistent problem in South Korea, with concentrations consistently exceeding World Health Organization (WHO) guidelines. The aging of the population in the country further exacerbates the health impacts of PM2.5 since older adults are more susceptible to the adverse effects of air pollution. Objectives: This study aims to evaluate how the health impact (premature death) due to long-term exposure to PM2.5 in South Korea could change in the future according to the trend of change in the country's population structure. Methods: The study employs a relative risk function, which accounts for age-specific relative risks, to assess the changes in premature deaths by age and region at the average annual PM2.5 concentration for 2022 and at PM2.5 concentration improvement levels. Premature deaths were estimated using the Global Exposure Mortality Model (GEMM). Results: The findings indicate that the increase in premature deaths resulting from the projected population structure changes up to 2050 would significantly outweigh the health benefits (reduction in premature deaths) compared to 2012. This is primarily attributed to the rising number of premature deaths among the elderly due to population aging. Furthermore, the study suggests that the effectiveness of the current domestic PM2.5 standard would be halved by 2050 due to the increasing impact of population aging on PM2.5-related mortality. Conclusions: The study highlights the importance of considering trends in population structure when evaluating the health benefits of air pollution reduction measures. By comparing and evaluating the health benefits in reflection of changes in population structure to the predicted PM2.5 concentration improvements at the provincial level, a more comprehensive assessment of regional air quality management strategies can be achieved.

남동권 초고농도 미세먼지 발생 특성과 비상저감조치 - 수도권과 비교연구 (II) (Characteristics of Extremely High PM2.5 Episode and Emergency Reduction Measures Plan in Southeastern Region - Comparative Study in Busan vs. Seoul Metropolitan Area (II))

  • 최다니엘;허국영;김철희
    • 한국환경과학회지
    • /
    • 제30권10호
    • /
    • pp.789-802
    • /
    • 2021
  • This study analyzed the characteristics of high PM2.5 episodes that meets the concentration criteria of Emergency Reduction Measures Plan (ERMP) in Busan during the 2015-2020, and compared with those in Seoul. As a first step, the CAPSS-2017 emission data was employed to analyze the emission differences between Busan and Seoul, and pointed out that Busan emission included the dominance of ship emissions (37.7%) among total PM2.5 city emissions, whereas fugitive PM2.5 emission was the highest in Seoul. These emission characteristics are indicating that the controlling action plan should be uniquely applied to cope with ERMP in each region. We selected extremely high PM2.5 episode days that meet the criteria of ERMP levels. In Busan, Ulsan, and Gyeongnam region, 15, 16, and 8 days of extremely high PM2.5 cases were found, respectively, whereas Seoul showed approximately doubling of occurrences with 37 cases. However, the occurrences in summer season indicated big differences between two cities: the proportion of summer-season occurrence was 13-25% in Busan, whereas no single case have occurred in Seoul. This is suggesting the needs of comprehensive summer emission reduction plan with focusing on sulfur reduction to effectively cope with the ERMP levels in summer in the southeastern region, including Busan.

소형디젤기관의 배출가스 저감을 위한 복합재생방식 DPF의 실차적용 연구 (Research on Actual Vehicle Application of Composite Regenerative DPF for Reducing Exhaust Gases of Light-duty Diesel Engines)

  • 이윤철;오상기
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.68-74
    • /
    • 2024
  • As awareness of environmental pollution problems increases worldwide, interest in air pollutants is increasing. In particular, NOx and PM, which are major pollutants in diesel vehicles, are contributing significantly to emissions. As a result, its importance is increasing. In this study, based on research results applied to large diesel vehicles, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation is solved by applying a complex regeneration DPF that is not affected by temperature conditions to small diesel vehicles. The feasibility of application to small diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the engine test, the power reduction rate and fuel consumption rate before and after device installation under full load conditions were 2.9% decrease and 3.5% increase, respectively, satisfying the standard for a 5% reduction, and as a result of the regeneration equilibrium temperature (BPT) test, the regeneration temperature was 310℃. appeared at the level. The reduction efficiency test results for the actual vehicle durability test equipment showed 97.3% PM, 51.0% CO, and 31.1% HC, while the city commuter vehicle had PM 97.5%, CO 61.7%, HC 40.0%, and the school bus vehicle had PM 96.8%, CO 44.4%, HC 34.3%, and low-speed logistics vehicles showed a reduction efficiency of 98.2% for PM, 36.0% for CO, and 45.7% for HC. Based on the results of this study, in the future, it is necessary to secure DPF technology suitable for all vehicle types through actual vehicle application research on temperature condition-insensitive composite regenerative DPF for medium-sized vehicles.

식생이 조성된 LID 시설의 효율 평가 (Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation)

  • 홍정선;김이형
    • Ecology and Resilient Infrastructure
    • /
    • 제3권2호
    • /
    • pp.100-109
    • /
    • 2016
  • 도시 지역의 물순환 구축과 비점오염물질 저감을 위해 구축되는 LID 시설의 지속적 효율은 주요 내부 구성요소(식물, 토양, 여재, 미생물 등)의 최적화된 상호작용에 의하여 나타난다. 본 연구는 식생이 조성된 4가지 LID 기술 (식생체류지, 소규모 인공습지, 빗물정원 및 나무여과상자)의 실제 도시 강우유출수의 유입으로 인한 식물의 성장상태 변화와 물순환 효과 및 비점오염물질 저감능력을 평가하기 위하여 수행되었다. 도시지역의 강우유출수의 약 40% 이상의 유출저감을 위한 적정 SA/CA (facility surface area / catchment area) 비는 시설마다 차이는 있지만 1~5% 범위가 적당한 것으로 평가되었다. 강우시 LID 시설에서의 유출저감은 비점오염물질 저감효율 향상에 중요한 영향을 끼치는 기작으로 나타났으며, SA/CA는 LID 시설의 중요한 설계인자로 도출되었다. 유출저감에 효과적인 시설은 빗물정원 > 나무여과상자 > 식생체류지 > 소규모 인공습지 순으로 나타났으며 입자상 물질 (TSS)의 제거능력은 빗물정원 > 나무여과상자 > 소규모 인공습지 > 식생체류지 순으로 분석되었다. 유기물 (COD, TOC), 영양물질 (TN, TP) 및 중금속 (Cu, Pb, Cd, Zn) 제거에는 빗물정원 > 나무여과상자 > 식생체류지 > 소규모 인공습지 순으로 조사되었으며 이러한 결과들은 향후 도시지역의 물순환 구축 및 비점오염물 제거에 적용되는 LID 시설의 설계에 중요한 자료로 활용 가능할 것으로 판단된다.

Reduction of Particulate Matters Levels in Railway Cabins in Korea

  • Park, Duck-Shin;Kwon, Soon-Bark;Cho, Young-Min;Park, Eun-Young;Jeong, Woo-Tae;Lee, Ki-Young
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.51-56
    • /
    • 2012
  • Objectives: High concentrations of airborne particulate matters (PM) can affect the health of passengers using public transportation. The objectives of this research were to develop a PM control system for a railway cabin and to evaluate the performance of the device under conditions of an actual journey. Methods: This study measured the concentrations of $PM_{10}$ and $PM_{2.5}$ simultaneously in a reference cabin and a cabin with the PM control device. Results: The average $PM_{10}$ concentration in the reference cabin was 100 ${\mu}g/m^3$, and the $PM_{10}$ concentration in the cabin with the control device was 79 ${\mu}g/m^3$. While the overall control efficiency of the control device was 15.4%, reduction was more effective for peak $PM_{10}$ concentration. However, $PM_{2.5}$ levels did not differ greatly between the reference cabin and the cabin with the control device. The ratio of $PM_{2.5}$ to $PM_{10}$ was 0.37. $PM_{10}$ concentrations in cabins were not associated with ambient concentrations, indicating that the main sources of $PM_{10}$ were present in cabins. Additionally, average $CO_2$ concentration in the cabins was 1,359 ppm, less than the maximum of 2,000 ppm set out by the Korean Ministry of Environment's guideline. The $CO_2$ concentration in cabins was significantly associated with the number of passengers: the in-cabin concentration = $23.4{\times}N+460.2$, where N is the number of passengers. Conclusions: Application of the PM control device can improve $PM_{10}$ concentration, especially at peak levels but not $PM_{2.5}$ concentration.