• Title/Summary/Keyword: Particles characterization

Search Result 603, Processing Time 0.031 seconds

Characterization of Fly Ash by Field-Flow Fractionation Combined with SPLITT Fractionation and Compositional Analysis by ICP-OES

  • Kang, Dong Young;Eum, Chul Hun;Lee, Seungho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.69-75
    • /
    • 2014
  • Accurate analysis of fly ash particles is not trivial because of complex nature in physical and chemical properties. SPLITT fractionation (SF) was employed to fractionate the fly ash particles into subpopulations in large quantities. Then the SF-fractions were analyzed by the steric mode of sedimentation field-flow fractionation (Sd/StFFF) for size analysis. The SF-fractions were also analyzed by ICP-OES. The results showed that the fly ash is mainly composed of Fe, Ca, Mg and Mn. No particular trends were observed between the particle size and the concentrations of Fe, Ca, Mg, while Mn, Cu and Zn were in higher concentrations in smaller particles. Sample preparation procedures were established, where the fly ash particles were sieved to remove large contaminants, and then washed with acetone to remove organics on the surface of particles. The sample preparation and analysis methods developed in this study could be applied to other environmental particles.

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권3호
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Size Characterization of Urban Airborne Particles Using Sedimentation/Steric Field-Flow Fractionation (Sd/StFFF)

  • Lee, Jae-Yong;Lee, Seung-Ho;Min, Young-Hong;Hyun, Dae-Yeung
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1172-1176
    • /
    • 2003
  • This study aims to investigate the applicability of Sd/StFFF and to develop a method for size characterization of urban airborne particles, focusing primarily on particles larger than about 1 mm. It was found that the airborne concentration vary with time, although no particular seasonal trend was observed. When averaged over time, the airborne concentration was the lowest in the park areas with 99 ㎍/m³. The apartment, industrial, and central city area showed similar levels of the airborne concentrations with 166, 170, and 171 ㎍/m³, respectively. The housing area showed the highest airborne concentration with 201 μg/m³ among all tested areas. A power-programmed Sd/StFFF was used for size analysis of airborne particles with the initial field strength of 300 rpm, $t_a$ = 4, $t_i$ = -16, p = 8, and the flow rate of 7 mL/min. It was found that urban airborne samples were mostly populated by particles having diameters between about 5 to 20 ㎛, although all have broad size distributions ranging up to about 50 ㎛. Under the Sd/StFFF condition used in this study, no significant differences were found in size distributions among the airborne particles collected at different urban sites, and also among those collected at different times.

분사주조한 Al기지 입자강화 복합재료의 마모특성 (Characterization of Wear Resistance of Particle Reinforced Al Matrix Composite Manufactured by Centrifugal Spray Casting)

  • 배차헌;최학규;방국수
    • 한국주조공학회지
    • /
    • 제24권2호
    • /
    • pp.108-114
    • /
    • 2004
  • $Al_2O_3$, SiC reinforced Al matrix composites were fabricated by centrifugal spray casting method and their wear resistance characteristics have been studied. Particles are generally uniformly distributed in the microstructure of as-cast specimens. In order to investigate the effect of secondary deformation, hot rolling was performed for each specimen of pure Al matrix composites with a reduction of 10, 20, 30, 40 and 50% at $400{\sim}500^{\circ}C$, respectively. Microstructure of specimen showed that particle distribution density and hardness increased because of increasing of reduction ratio. Wear test with a various sliding velocity of 1.98, 2.38, 2.88 and 3.53m/sec showed that the wear resistance characterization of composite improved remarkably compared to the normal alloy and performs without reinforced particles. Microstructural observation for the worn surface of pure Al specimens without particles showed that a change in wear mechanism seemed to separate layer by surface fatigue. In other case of Al composite reinforced with $Al_2O_3$ and SiC, the grinder type of wear mechanism was shown.

Characterization of Spherical Particles by Light Scattering

  • Sangwook Park;Jungmoon Sung;Taihyun Chang
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권3호
    • /
    • pp.322-328
    • /
    • 1991
  • We have studied a characterization method of accurate size of spherical particles by fitting experimental light scattering profile to the rigorous theoretical scattering function. An efficient software has been developed for computation of the theoretical scattering function and regression analysis. A light scattering instrument has been built and the necessary data acquisition and analysis are carried out by use of a personal computer with an emphasis on the reduction of analysis and time aiming that this study will be extended toward a development of a practical particle sizing apparatus. The performance of the instrument and the software has been evaluated with latex spheres and found to be satisfactory.

졸-겔법에 의한 나노크기의 티탄-콜로이드 합성 및 인산염 피막 특성 (Synthesis of Nanosized Titanium-Colloid by Sol-Gel Method and Characterization of Zinc Phosphating)

  • 이만식;이선도
    • 한국표면공학회지
    • /
    • 제38권1호
    • /
    • pp.37-43
    • /
    • 2005
  • Nanosized titanium-colloid particles were prepared by sol-gel method. The physical properties, such as thermal stability, crystallite size and crystallinity according to synthesis condition have been investigated by TEM, XRD, SEM, TGA and DTA. In addition, Zinc phosphating has been studied in order to compare the phosphating characterization of prepared nanosized titanium-colloid particles. The major phase of all the prepared titanium-colloid particles was an amorphous structure regardless of synthesis temperature and the structure was composed of phoshate complex and titanium. The micrographs of HR- TEM showed that nanosized titanium-colloid particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the titanium-colloid particles synthesized at 80℃ was 4-5 nm and increased to 8-10 nm with an increase of synthesis temperature (150℃). In addition, the coating weight increased with an increase of temperature of phosphating solution and when the concentration of titanium-colloid was 2.0 g/l, the coating weight was 1.0 g/㎡.

증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구 (Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method)

  • 유연태
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

졸 합성시 숙성이 γAl2O3 입자의 표면특성에 미치는 영향 (Effects of Surface Characterization of γAl2O3 Particles by Aging in the Sol Preparation)

  • 유승준;곽동희;김형기;황운연;박형상;윤호성;장희동
    • Korean Chemical Engineering Research
    • /
    • 제46권3호
    • /
    • pp.545-549
    • /
    • 2008
  • ${\gamma}-AlO$(OH) 졸 입자 뿐만 아니라 소성처리된 ${\gamma}-Al_2O_3$ 입자의 표면특성을 ${\gamma}-AlO$(OH) 졸 제조시 숙성단계에 의하여 조절하였다. 연구결과, ${\gamma}-AlO$(OH) 졸 입자의 등전점은 숙성 증가에 따라 pH 9.25에서 pH 8.70까지 감소하였으며 ${\gamma}-Al_2O_3$ 입자의 경우는 pH 9.90에서 pH 8.86까지 감소하였다. 숙성에 따른 ${\gamma}-Al_2O_3$ 입자의 산, 염기 특성을 고찰한 결과, ${\gamma}-Al_2O_3$ 입자의 산량은 숙성시간의 증가에 따라 0.1367 mmol/g에서 0.0783 mmol/g까지 감소하였으며, Hammett 산성도함수 $H_o$는 4.8 이상의 산세기를 보였다. 한편 ${\gamma}-Al_2O_3$ 입자의 염기량은 숙성시간의 증가에 따라 0.4399 mmol/g에서 0.3074 mmol/g 까지 감소하였다. 따라서 졸-겔법에 의한 ${\gamma}-Al_2O_3$ 제조시 숙성공정이 산, 염기점의 양을 포함한 표면특성을 조절할 수 있는 중요 공정변수임을 제시하였다.

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

Pulse도금법에 의한 Ag주입 양극산화 알루미늄 합금의 항균특성에 관한 기초연구 (A Study on the Antibacterial Properties of Ag Electropulsed Anodized Aluminium Alloy)

  • 임기영;기준서;장용석;이우민;윤정모
    • 한국재료학회지
    • /
    • 제16권10호
    • /
    • pp.639-646
    • /
    • 2006
  • Over the last two decades, microbiologically influenced corrosion (MIC) of metallic materials has received considerable attention due to its serious effects on industrial field. In this context, it is important to devise control methods which inhibit biofilm formation on various metallic compounds and are compatible with environment. It was change of various conditions (duty cycle, current density, $AgNO_3$ concentration and pH) for injection of Ag particles in anodized Aluminum alloy pore using pulsed current. Optimal condition was obtained by means of FE-SEM, ICP analysis etc. The antibacterial metal's specimen were manufactured under optimal condition and this specimen were tested the antibacterial characterization and anticorrosion characterization. In result of test, we can confirmed that the antibacterial characterization and anticorrosion characterization of the specimens of injected Ag particles in anodized Aluminum alloy pore using pulsed current were better than the anodized Aluminum alloy specimens.