• 제목/요약/키워드: Particle-tracking method

검색결과 207건 처리시간 0.021초

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.

피드백과 박스 보정을 이용한 Particle Filtering 객체추적 방법론 (Particle Filtering based Object Tracking Method using Feedback and Tracking Box Correction)

  • 안정호
    • 한국위성정보통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.77-82
    • /
    • 2013
  • 최근 주목을 받고 있는 Particle Filtering은 실제 객체 추적에서 발생하는 비선형, 비 가우시안 분포를 가지는 상태 벡터의 사후확률을 추정하기 위한 Monte Carlo 시뮬레이션에 기반을 둔 추적 방법론이다. 우리는 본 논문에서 Particle Filtering을 이용한 객체 추적성능을 향상시킬 수 있는 두 가지 방법론을 제안한다. 첫 번째는 확률이 가장 낮은 샘플을 이전 프레임의 추정된 상태 벡터로 대치하는 피드백 방법론이고, 두 번째는 객체 확률 분포를 추정된 객체 후보영역에 역투영하여 신뢰구간을 구함으로써 추적 박스의 정확도를 향상시키는 방법이다. 또한, 실험을 통해 구한 추적 샘플의 진화 방정식을 제시하였다. 우리는 다양한 상황이 설정된 실험 데이터 셋을 구성하여 실험을 실시하여 제안한 방법론의 우수성을 입증하였다.

수치, 해석적, 준 해석적 및 해석적 방법을 통합한 새로운 입자추적기술 개발 (Development of new integrated particle tracking techniques combining the numerical method, semi-analytical method, and analytical method)

  • 석희준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권6호
    • /
    • pp.50-61
    • /
    • 2008
  • 본 연구를 통해서 율러리안-라그랑지안 방법(ELM)의 본질적인 문제점인 입자추적오차에 의해 발생되는 질량오차를 최소화하기 위해서, 새로운 통합 입자 추적 방법이 개발되었다. 새로운 통합입자 추적 방법은 시간 간격 내에서 시공간의 속도변화를 동시에 고려한 수치 해석적 방법, 준해석적 방법, 그리고 해석적 방법을 결합시킨 것이다. 수치 해석적 방법, 준해석적 방법, 그리고 해석적 방법의 수학적 유도를 자세히 나타내었고, 네 가지 예제를 만들어서 개발된 통합입자추적방법을 해석해 및 4차 룬지쿠타 방법과의 비교를 통해서 검증하였을 뿐만 아니라 기존의 입자추적방법인 Lu의 방법과 비교를 통해서 우수성을 보였다.

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

Particle tracking algorithm for the Lagrangian-Eulerian finite element method

  • 석희준
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.97-100
    • /
    • 2004
  • Multivariate Newton Raphson method is developed to perform the particle tracking in the three dimensional area using four objective functions. In this method, three variables are solved to compute target point and actual and real tracking time. The simulated pathlines in various types of three dimensional elements are well matched with exact pathline.

  • PDF

Scale Invariant Single Face Tracking Using Particle Filtering With Skin Color

  • Adhitama, Perdana;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • 제9권3호
    • /
    • pp.9-14
    • /
    • 2013
  • In this paper, we will examine single face tracking algorithms with scaling function in a mobile device. Face detection and tracking either in PC or mobile device with scaling function is an unsolved problem. Standard single face tracking method with particle filter has a problem in tracking the objects where the object can move closer or farther from the camera. Therefore, we create an algorithm which can work in a mobile device and perform a scaling function. The key idea of our proposed method is to extract the average of skin color in face detection, then we compare the skin color distribution between the detected face and the tracking face. This method works well if the face position is located in front of the camera. However, this method will not work if the camera moves closer from the initial point of detection. Apart from our weakness of algorithm, we can improve the accuracy of tracking.

공간지능화를 위한 색상기반 파티클 필터를 이용한 다중물체추적 (Multiple Object Tracking with Color-Based Particle Filter for Intelligent Space)

  • 진태석;하시모토 히데키
    • 로봇학회논문지
    • /
    • 제2권1호
    • /
    • pp.21-28
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

  • PDF

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

개선된 Observe 기법을 적용한 Particle Filter 물체 추적 (Object Tracking Using Particle Filter with an Improved Observe Method)

  • 조현중;이철우;정재기;김진율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.210-212
    • /
    • 2009
  • In object tracking based on the particle filter algorithm controlling the proper distribution of the samples is essential to accurately track the target. If the samples are spread too wide compared to the target size, the tracking accuracy may degrade as some samples can be caught by background clutters that is similar to the target. On the other hands if the samples are spread too narrow, the particle filter may fail to track the abrupt motion of the target. To solve this problem we propose an improved particle filter that adopts "re-weighting" technique at the observe step. We estimate the distribution of the weights of the current samples by its mean and variance. Then the samples are re-weighted so that the appropriate distribution of the samples in proportional to the target scale is obtained at the next select step. The proposed tracking method can avoid convergence to local mean and improve the accuracy of the estimated target state.

  • PDF

유선 분석법의 개발 및 적용 (Development and Application of Streamline Analysis Method)

  • 김태범;이치형;정재열
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.9-15
    • /
    • 2023
  • In order to properly evaluate the spatio-temporal variations of groundwater flow, the data obtained in field experiments should be corroborated into numerical simulations. Particle tracking method is a simple simulation tool often employed in groundwater simulation to predict groundwater flow paths or solute transport paths. Particle tracking simulations visually show overall the particle flow path along the entire aquifer, but no previous simulation studies has yet described the parameter values at grid nodes around the particle path. Therefore, in this study, a new technical approach was proposed that enables acquisition of parameters associated with particle transport in grid nodes distributed in the center of the particle path in groundwater. Since the particle tracking path is commonly referred to as streamline, the algorithm and codes developed in this works designated streamline analysis method. The streamline analysis method can be applied in two-dimensional and three-dimensional finite element or finite difference grid networks, and can be utilized not only in the groundwater field but also in all fields that perform numerical modeling.