• Title/Summary/Keyword: Particle-reinforced composites

Search Result 154, Processing Time 0.029 seconds

Effect of TiO2 Particle Size and Content on the Mechanical Properties of TiO2/Epoxy Composites (TiO2 나노입자의 크기와 함량이 TiO2/Epoxy 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Bu-An;Moon, Chang-Kwon
    • Journal of Power System Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2017
  • This study is about the mechanical properties of epoxy composite reinforced with nano $TiO_2$ particle. Tensile strength, fracture toughness, vicker's hardness and Izod Impact test were carried out to investigate the effect of particle size and content of $TiO_2$ on the mechanical properties of $TiO_2$/epoxy composites. The results showed that the strength of the $TiO_2$/epoxy composites were higher than that of the pure epoxy. The best improvement of tensile strength was achieved in case of the particle size was 21 nanometer and the content was 3 weight percent. However, the Izod Impact value and the Vicker's hardness of $TiO_2$/epoxy composites showed no clear tendency.

Absolute effective elastic constants of composite materials

  • Bulut, Osman;Kadioglu, Necla;Ataoglu, Senol
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.897-920
    • /
    • 2016
  • The objective is to determine the mechanical properties of the composites formed in two types, theoretically. The first composite includes micro-particles in a matrix while the second involves long, thin fibers. A fictitious, homogeneous, linear-elastic and isotropic single material named as effective material is considered during calculation which is based on the equality of the strain energies of the composite and effective material under the same loading conditions. The procedure is carried out with volume integrals considering a unique strain energy in a body. Particularly, the effective elastic shear modulus has been calculated exactly for small-particle composites by the same procedure in order to determine of bulk modulus thereof. Additionally, the transverse shear modulus of fiber reinforced composites has been obtained through a simple approach leading to the practical equation. The results have been compared not only with the outcomes in the literature obtained by different method but also with those of finite element analysis performed in this study.

The effect of particle size on tool wear of SiCp-reinforced metal matrix composite

  • Sahin, Y.;Sur, G.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.237-239
    • /
    • 2002
  • The effect of particle sizes of the metal matrix composites containing 10 wt.%SiCp was investigated with using various tools. The results showed that tool life decreased considerably with increasing particle size and cutting speed. The wear resistance of TiC-coated tools was considerably higher than that of the other tools. It was observed that abrasive wear was the main responsible mechanism for wear of the tool thermal cracks were at high speed while a built-edge formation was also evident at lower speed.

  • PDF

Effect of Volume fraction of SiC Particle Reinforcement on the Wear Properties of 6061AI Composites (6061AI 복합재료 마모특성에 미치는 SiC입자 강화재 체적분율의 영향)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.82-92
    • /
    • 2002
  • In the present investigation wear behavior of the 6061AI composites reinforced with 5, 10, 20% SiC particles for dry sliding against a SM45C counterface was studied as a function of load and sliding velocity. Sliding wear tests were conducted at two loads(19.6 and 49N) and three sliding velocities(0.2, 1 and 2 m/sec) at constant sliding distance of 4000 m using pin-on-disk machine under room temperature. Presence of SiC reinforcement particles in the composites has displayed a transition from mild to severe wear at relatively higher applied load and sliding velocity compare to that of the matrix metal. As the volume fraction of SiC particles increased, the transition moved to a more severe wear conditions. Eventually, mild wear prevailed at a most severe wear conditions in this study, that was 49N load and 2 m/sec sliding velocity in 20% SiC particle/6061AI composite.

A Study on Hot Deformation Behavior of $SiC_p$/AI2024 Composites Reinforced with Different Sizes of $SiC_p$ ($SiC_p$ 크기를 달리한 $SiC_p$/Al2024 복합재료의 열간 변형특성에 관한연구)

  • Ko, Byung-Chul;Hong, Heung-Ki;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.2
    • /
    • pp.158-167
    • /
    • 1998
  • Hot restoration mechanism flow stress and stain of the Al2024 composites reinforced with 1,8,15,36, and $44{\mu}m\;SiC_p$(10 vol. %) were studied by hot torsion tests. The hot restoration mechanism of all the composites was found to be dynamic recrystallization(DRX) at $320^{\circ}C$ while that of the composites reinforced with 1 and $8{\mu}m\;SiC_p$ was found to be dynamic recovery(DRX) at $480^{\circ}C$. It was found that the Al2024 composite with $15{\mu}m\;SiC_p$ showed the highest flow stress(${\sim}$223 MPa) at $320^{\circ}C$ under a strain rate of 1.0/sec. Also the highest flow strain of the composites was obtained at $430^{\circ}C$. The com-posites reinforced with 1 and $8{\mu}m\;SiC_p$ showed lower flow stress and higher flow strain at $480^{\circ}C$ than those of the composites reinforced with 15, 36, and $44\;{\mu}m\;SiC_p$ These result were discussed in relation to the transition of the hot restoration mechanism. $DRX{\leftrightarrow}DRV$. The dependence of flow stress on strain rate and temperature was attempted to fit with the hyperbolic sine equation ($\dot{\varepsilon}=A[sinh({\alpha}{\cdot}{\sigma}_p]^n$ exp(-Q/RT)and Zener-Hollomon parameter($Z=\;\dot{\varepsilon}\;exp(Q/RT))$.

  • PDF

Effect of Additives on the Strength Characteristics of MDF Cement Composites (MDF 시멘트 복합재료의 강도 특성에 미치는 첨가재의 영향)

  • 김태현;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.893-899
    • /
    • 1992
  • Composite specimens, which are composed MDF cement of HAC-PVA system were prepared by adding carbon fiber, hydrated silica and SiC powder, and we studied effect of additives on the flexural strength of the composites. All of additives is effective in the improvement of flexural strength of the composite specimens. The size of average pore diameter in the specimens which have high flexural strength property was small. Specimen mixed with hydrated silica was effective in the particle compact property. Flexural strength of carbon fiber reinforced MDF cement composites were improved because of crack deflection of carbon fiber in cementitious matrix.

  • PDF

Particle Size-Dependent Failure Analysis of Particle-Reinforced Metal Matrix Composites using Dislocation Punched Zone Modeling (전위 펀치 영역 모델링에 의한 입자 강화 금속지지 복합재의 입자 크기 의존 파손 해석)

  • Suh, Yeong Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.275-282
    • /
    • 2014
  • Particle-reinforced metal matrix composites exhibit a strengthening effect due to the particle size-dependent length scale that arises from the strain gradient, and thus from the geometrically necessary dislocations between the particles and matrix that result from their CTE(Coefficient of Thermal Expansion) and elastic-plastic mismatches. In this study, the influence of the size-dependent length scale on the particle-matrix interface failure and ductile failure in the matrix was examined using finite-element punch zone modeling whereby an augmented strength was assigned around the particle. The failure behavior was observed by a parametric study, while varying the interface failure properties such as the interface strength and debonding energy with different particle sizes and volume fractions. It is shown that the two failure modes (interface failure and ductile failure in the matrix) interact with each other and are closely related to the particle size-dependent length scale; in other words, the composite with the smaller particles, which is surrounded by a denser dislocation than that with the larger particles, retards the initiation and growth of the interface and matrix failures, and also leads to a smaller amount of decrease in the flow stress during failure.

Effect of graphite particulate on mechanical properties of glass fibre reinforced composite

  • Bhattacharjee, Antara;Roy, Kanchan;Nanda, B.K.
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2020
  • The recent trend is increasing towards the usage of polymer matrix composites since they have a wide variety of applications. They have applications in the field of aircraft and space industry, sporting goods, medical devices, marine and automotive applications and also in commercial usage. The most commonly used fibre-reinforced polymer matrix composite is Glass fibre reinforced epoxy (GFRE) composite which is used in aviation, sports and automotive industries. However, the strength of GFRE composites is not adequate for structural applications. Therefore, the current research focuses on increasing the strength of GFRE composites by reinforcing with micro Graphite (Gr) particulates. The Gr used is an ultra-fine powder with particle size 250 ㎛. Gr is known to have good wear resistance, thermal conductivity and can operate at high temperatures. Gr particulates are mixed with the epoxy matrix in various weight ratios. Hand-lay technique is used for fabricating the composites. Mechanical properties such as tensile strength, elongation, compressive strength and flexural strength are obtained experimentally to study the effect of change in Gr content (0-5 wt. %). The tests were done as per ASTM standards.

Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by a Pressureless Metal Infiltration Process (무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성)

  • 김재동;정순억;김형진
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.55-60
    • /
    • 2003
  • The effect of size and volume fraction of ceramic particles, with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by the pressureless infiltration process. The metal matrix composites exhibited about 5.5 - 6 times the wear resistance compared with AC8A alloy at high sliding velocity, and by increasing the particle size and decreasing the volume fraction, the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity, linearly : whereas, metal matrix composites indicated more wear loss than AC8A alloy at the slow velocity region. However, a transition point of wear loss was found at the middle velocity region, which shows the minimum wear loss. Further, wear loss at the high velocity region exhibited nearly the same value as the slow velocity region. In terms of wear mechanism, the metal matrix composites generally exhibited abrasive wear at slow to high sliding velocity; however, AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.