• Title/Summary/Keyword: Particle-based fluids

Search Result 67, Processing Time 0.024 seconds

Shape Design Improvement of the Rotary Cutting Machine to Improve the Dust Capturing Efficiency using CFD (회전톱 재단기의 미세먼지 집진효율 향상을 위한 형상 설계 개선)

  • Kim, G.H.;Rhee, H.N.;Jeon, W.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.508-511
    • /
    • 2011
  • Dust released from the rotating timber cutting process causes various kinds of diseases as well as safety issues. Although there were lots of efforts to reduce the amount of dust by installing large-sized dust collectors or by using expensive high-quality cutters, they proved to be not so effective. In this study we want to modify and improve the design of the rotary cutter system to prevent dust from being released to the environment as possible by using computational fluid dynamics (CFD) analysis. We have developed CFD models of the conventional cutter and several design modifications. Through the CFD analysis the characteristics of the air flow was predicted, and then the behavior of dust produced during the cutting process was analyzed for different designs. The most efficient design feature to capture dust inside the cutter as much as possible was chosen based on the CFD analysis results. Finally the prototype of the ratary saw machine was constructed and tested to check the dust capturing efficiency, which result is reasonably consistent with the predicted performance through the CFD analysis.

  • PDF

Two-Phase Two-Component Loop Thermosyphon with Nanofluid (나노유체를 이용한 2상유동 2성분 루프형 열사이폰)

  • Rhi Seok-Ho;Park Jong-Chan;Cha Kyeong-Il;Lim Taek-Kyu;Lee Chung-Gu;Shin Dong-Ryun;Park Gi-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.384-392
    • /
    • 2006
  • Reported are the heat transfer characteristics of a two-phase loop thermosyphon (TLT) with nanofluids consisted of nano-size silver particles and distilled water as the working fluid. The nanofluids used in the present study are dispersed solutions with various amount of silver nanoparticle in distilled water. It is seen from the present study that the heat transfer performance of the test TLT with nanofluids increased as much as about 2 times higher than that of a TLT with pure water as the working fluid based on same heat flux. The study also showed that there was no deterioration of the TLT performance with time, up to a period of 8 days of continuous operation which implies that there was no coagulation of nanoparticles within the working nanofluid during the operation of the test TLT.

FINITE SPEED OF PROPAGATION IN DEGENERATE EINSTEIN BROWNIAN MOTION MODEL

  • HEVAGE, ISANKA GARLI;IBRAGIMOV, AKIF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.108-120
    • /
    • 2022
  • We considered qualitative behaviour of the generalization of Einstein's model of Brownian motion when the key parameter of the time interval of free jump degenerates. Fluids will be characterised by number of particles per unit volume (density of fluid) at point of observation. Degeneration of the phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dense gas and b) flow of fluid far away from the source of flow, when the velocity of the flow is incomparably smaller than the gradient of the density. First, we will show that both types of flows can be modeled using the Einstein paradigm. We will investigate the question: What features will particle flow exhibit if the time interval of the free jump is inverse proportional to the density and its gradient ? We will show that in this scenario, the flow exhibits localization property, namely: if at some moment of time t0 in the region, the gradient of the density or density itself is equal to zero, then for some T during time interval [t0, t0 + T] there is no flow in the region. This directly links to Barenblatt's finite speed of propagation property for the degenerate equation. The method of the proof is very different from Barenblatt's method and based on the application of Ladyzhenskaya - De Giorgi iterative scheme and Vespri - Tedeev technique. From PDE point of view it assumed that solution exists in appropriate Sobolev type of space.

Puncture and Cutting Resistance Characteristics of Shear Thickening Fluid Impregnated Kevlar Fabrics (전단농화유체가 함침된 Kevlar 직물의 방검 및 방침 특성)

  • Lee, Bok-Won;Kim, Il-Jin;Lee, Yeon-Gwan;Kim, Chun-Gon;Yoon, Byung-Il;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.23-30
    • /
    • 2008
  • Stab threats using sharp edged or pointed Instruments could be easily encountered by police officers or soldiers. In this study, the shear thickening fluids (STF) was impregnated into Kevlar fabrics to improve the stab protection and the resistance of STF impregnated Kevlar fabrics was experimentally investigated. The puncture and cut resistance were tested using a drop test machine withspike and knife indenters fabricated based on the National Institute of Justice (NIJ) standard. The STF was filled with spherical $SiO_2$ particles having an average diameter of 100nm, 300nm, and 500nm. The effect of particle size on puncture and cut resistance of STF impregnated Kevlar fabrics was also investigated. The measured impact load histories showed that STF impregnation into fabric leads to withstand higher peak loads than that of neat fabrics under spike test. The test results showed that Kevlar impregnated with STF exhibit remarkable improvements in puncture resistance while it is slightly influential on the cut resistance. Specifically, particle size is the one of the dominant factors controlling fabric resistance to puncture under spike impact test.

Flow Evaluation and Hemolysis Analysis of BVAD Centrifugal Blood Pump by Computational Fluids Dynamics

  • Bumrungpetch, Jeerasit;Tan, Andy Chit;Liu, Shu-Hong;Luo, Xian-Wu;Wu, Qing-Yu;Yuan, Jian-Ping;Zhang, Ming-Kui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left - 100mmHg and right - 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

Study of the Kinetic Effects on Relativistic Unmagnetized Shocks using 3D PIC Simulations

  • Choi, Eun Jin;Min, Kyoung W.;Choi, Cheongrim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2012
  • Shocks are ubiquitous in astrophysical plasmas: bow shocks are formed by the interaction of solar wind with planetary magnetic fields, and supernova explosions and jets produce shocks in interstellar and intergalactic spaces. The global morphologies of these shocks are usually described by a set of magnetohydrodynamic (MHD) equations which tacitly assumes local thermal equilibrium, and the resulting Rankine-Hugoniot shock jump conditions are applied to obtain the relationship between the upstream and downstream physical quantities. While thermal equilibrium can be achieved easily in collisional fluids, it is generally believed that collisions are infrequent in astrophysical settings. In fact, shock widths are much smaller than collisional mean free paths and a variety of kinetic phenomena are seen at the shock fronts according to in situ observations of planetary shocks. Hence, both the MHD and kinetic equations have been adopted in theoretical and numerical studies to describe different aspects of the physical phenomena associated with astrophysical shocks. In this paper, we present the results of 3D relativistic particle-in-cell (PIC) simulations for ion-electron plasmas, with focus on the shock structures: when a jet propagates into an unmagnetized ambient plasma, a shock forms in the nonlinear stage of the Weibel instability. As the shock shows the structures that resemble those predicted in MHD systems, we compare the results with those predicted in the MHD shocks. We also discuss the thermalization processes of the upstream flows based on the time evolutions of the phase space and the velocity distribution, as well as the wave spectra analyses.

  • PDF

Electrorheological Behaviors and Interfacial Polarization of Semi-conductive Polymer-based Suspensions (반도성 고분자 현탁액의 전기유변학적 거동과 계면편극화)

  • B.D Chin;Lee, Y.S.;Lee, H.J.;S.M. Yang;Park, O.O.
    • The Korean Journal of Rheology
    • /
    • v.10 no.4
    • /
    • pp.195-201
    • /
    • 1998
  • We have studied the rheological and electrical properties of two types of electrorheological (ER) fluids based on semi-conductive polymers (poly(p-phenylene) and polyaniline). These semi-conductive polymer-based suspensions showed a dramatic increase in viscosity on the application of the static electric field due to the large value of conductivity ratio between particle and medium. The dynamic yield stresses of these ER suspensions exhibited a quadratic dependence on electric field strength at low electric fields and a linear one for high fields. They showed a maximum and then decreased with increasing bulk conductivity of particles. These yield stress behaviors under the static electric field were found to be closely related to the dielectric properties, which is in accord with Maxwell-Wagner interfacial polarization induced by the conductivity effects. In order to achieve better understanding of interfacial polarization effect on ER response and to improve the stability of ER suspension, different kinds of surfactants were employed for controlling the ER activity as well as for enhancing the colloidal stability of suspensions.

  • PDF