• Title/Summary/Keyword: Particle sizes

Search Result 1,165, Processing Time 0.022 seconds

Electromagnetic Wave Absorption Properties According to by Controling Ferrite Particle Size in Electromagnetic Wave Absorber of Sheet Type (Sheet형 전파흡수체에 있어 페라이트 입자 크기의 제어에 따른 전파흡수특성)

  • 김동일;김수정;옥승민;송재만
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.319-323
    • /
    • 2002
  • Electromagnetic wave absorbers with the shape of sheet have been fabricated and their absorption properties are measured. The fabricated ferrite absorbers have different particle sizes and the absorbtion property is increased with decreasing the size of particle in a certain frequency range of 2.4∼3.2 ㎓.

  • PDF

Performace of a Cyclone and an impactor Using Monodisperse and Polydisperse Particles (단분산 입자와 다분산 입자를 이용한 싸이클론 및 임팩터의 성능평가)

  • Im Gyeong-Su;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.101-102
    • /
    • 2001
  • Monodisperse aerosols containing spherical particles of known size, shape and density are the most widely used to calibrate particle-size measuring instruments and to determine the effects of particle size on the sampling device. However, these tests are time-consuming because monodisperse aerosols with different particle sizes are generated and tested in a series of experiments. Polydisperse aerosols may be used to determine the calibration or to simulate equipment under controlled laboratory condition. (omitted)

  • PDF

Surface Aging Phenomena of EPDM rubber by Contaminant (오손액에 의한 EPDM rubber의 표면열화 현상)

  • 이철호;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.317-320
    • /
    • 1997
  • The paper reports on a study of the influence of the size of the particles of alumina trihydrate(ATH) filler on the surface aging characteristics of ehylene propylene diene terpolymer(EPDM). A fixed 100pph concentration of the filler of ATH was used (or all particle sizes from 0.7 to 20$\mu\textrm{m}$, It is show that hysteresis of contact angle and leakage current increase with increasing particle size, whereas tracking resistance decrease with increasing particle size.

  • PDF

EFFECTS OF AP PARTICLE SIZE IN COMPOSITE PROPELLANT COMBUSTION

  • Lee, S. T.;S. W. Hong;K. H. Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.4-11
    • /
    • 1993
  • Composite propellant combustion is studied experimentally with systematic variation of particle sizes and mix ratios of coarse and fine APs. Considering the different modes of oxidizer-fuel flames in heterogeneous systems, the complex flame model is described to identify what combustion mechanisms are important under what conditions. The effects of AP particle size, ratio of coarse to fine AP, and pressure on burning rates are discussed in terms of qualitative theory of flame microstructure.

  • PDF

Effect of Nozzle Tip Size on the Fabrication of Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Kim, Donghee;Yu, Jaekeun
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.489-494
    • /
    • 2013
  • In this study, by using nickel chloride solution as a raw material, a nano-sized nickel oxide powder with an average particle size below 50 nm was produced by spray pyrolysis reaction. A spray pyrolysis system was specially designed and built for this study. The influence of nozzle tip size on the properties of the produced powder was examined. When the nozzle tip size was 1 mm, the particle size distribution was more uniform than when other nozzle tip sizes were used and the average particle size of the powder was about 15 nm. When the nozzle tip size increases to 2 mm, the average particle size increases to roughly 20 nm, and the particle size distribution becomes more uneven. When the tip size increases to 3 mm, particles with an average size of 25 nm and equal to or less than 10 nm coexist and the particle size distribution becomes much more uneven. When the tip size increases to 5 mm, large particles with average size of 50 nm partially exist, mostly consisting of minute particles with average sizes in the range of 15~25 nm. When the tip size increases from 1 mm to 2 mm, the XRD peak intensities greatly increase while the specific surface area decreases. When the tip size increases to 3 mm, the XRD peak intensities decrease while the specific surface area increases. When the tip size increases to 5 mm, the XRD peak intensities increase again while the specific surface area decreases.

Particle Behavior and Deformation During Compaction of Al Powder Using MPFEM (다입자유한요소법을 이용한 Al분말 압축공정에서 입자의 거동과 변형에 관한 연구)

  • Lee, Kyung-Hun;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2010
  • This paper describes multiparticle finite element model (MPFEM)-based powder compaction simulations performed to demonstrate the densification of compacted aluminum powders. A 2D MPFEM was used to explore the densification of a collection of aluminum particles with different average particle sizes under various ram speeds. Individual particles are discretized using a finite element mesh for a detailed description of contact mechanics. Porous aluminum powders with average particle sizes of $20\;{\mu}m$ and $3\;{\mu}m$ were compressed uniaxially at ram speeds of 5, 15, 30, and 60 mm/min by using an MTS servo-hydraulic tester. The slow ram speed was of great advantage to powder densification in low compaction force due to sufficient particle rearrangement. Owing to a decrease in the average particle size of aluminum, the compaction force increased.

Error Analysis of Image Velocimetry According to the Variation of the Interrogation Area (상관영역 크기 변화에 따른 영상유속계의 오차 분석)

  • Kim, Seojun;Yu, Kwonkyu;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.821-831
    • /
    • 2013
  • Recently image velocimetries, including particle image velocimetry (PIV) and surface image velocimetry (SIV), are often used to measure flow velocities in laboratories and rivers. The most difficult point in using image velocimetries may be how to determine the sizes of the interrogation areas and the measurement uncertainties. Especially, it is a little hard for unskilled users to use these instruments, since any standardized measuring techniques or measurement uncertainties are not well evaluated. Sometimes the user's skill and understanding on the instruments may make a wide gap between velocity measurement results. The present study aims to evaluate image velocimetry's uncertainties due to the changes in the sizes of interrogation areas and searching areas with the error analyses. For the purpose, we generated 12 series of artificial images with known velocity fields and various numbers and sizes of particles. The analysis results showed that the accuracy of velocity measurements of the image velocimetry was significantly affected by the change of the size of interrogation area. Generally speaking, the error was reduced as the size of interrogation areas became small. For the same sizes of interrogation areas, the larger particle sizes and the larger number of particles resulted smaller errors. Especially, the errors of the image velocimetries were more affected by the number of particles rather than the sizes of them. As the sizes of interrogation areas were increased, the differences between the maximum and the minimum errors seemed to be reduced. For the size of the interrogation area whose average errors were less than 5%, the differences between the maximum and the minimum errors seemed a little large. For the case, in other words, the uncertainty of the velocity measurements of the image velocimetry was large. In the viewpoint of the particle density, the size of the interrogation area was small for large particle density cases. For the cases of large number of particle and small particle density, however, the minimum size of interrogation area became smaller.

Effects of the Addition of Metallic Salts and Polyhydric Alcohols on the Formation and the Triboelectric Charge of Zinc Complex-compound Particle (아연 착화합물의 입자형성 및 마찰대전량에 미치는 금속염 및 다가알코올 첨가의 영향)

  • In, Se-Jin
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2013
  • The experiments have been performed to obtain zinc complex compound with smaller particle sizes, which is used as a charge control agent in manufacturing toner. Metallic salts and polyhydric alcohols have been studied to investigate their effects on the formation and the triboelectric charge of zinc complex-compound particle with different sizes. Reactants such as zinc chloride and 3,5-di-tert.-butyl salicylic acid have been used to form the complex compound. Polyethylene glycol (PEG-300), glycerin and ethylene glycol have been added into the zinc chloride solution beforehand to lower the reaction rate in the formation of zinc complex-compound. Aluminium(III) chloride has been mixed in the zinc chloride solution beforehand to restrain the particle size from growing. When PEG-300 and aluminium(III) chloride are used to lower the reaction rate and to restrain the particle size from growing, the average particle size of zinc complex compound decreases from $5.28{\mu}m$ to $2.33{\mu}m$, which was 44.1% of $5.28{\mu}m$.

Application of DEM with Coarse Graining Method to Fluidal Material Behavior Analysis (유동성 재료의 동적 거동 해석을 위한 입자확대법 기반 DEM의 적용)

  • Yun, Taeyoung
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.23-30
    • /
    • 2017
  • PURPOSES : In this paper, the applicability of DEM to a coarse graining method was evaluated by simulating a series of minicone tests for cement paste. METHODS : First, the fundamental physical quantities that are used in a static liquid bridge model were presented with three basic quantities based on the similarity principle and coarse graining method. Then, the scale factors and surface tensions for six different sizes of particles were determined using the relationship between the physical quantities and the basic quantities. Finally, the determined surface tensions and radii were utilized to simulate the fluidal behavior of cement paste under a minicone test condition, and the final shape of the cement paste with reference DEM particle radii was compared with the final shape of the others. RESULTS : The simulations with adjusted surface tensions for five different radii of particles and surface tension showed acceptable agreement with the simulation with regard to the reference size of the particle, although disagreement increases as the sizes of the particle radii increase. It seems reasonable to increase the particle radii by at least 0.196 cm considering the computational time reduction of 162 min. CONCLUSIONS : The coarse graining method based on the similarity principle is applicable for simulating the behavior of fluidal materials when the behavior of the materials can be described by a static liquid bridge model. However, the maximum particle radius should be suggested by considering not only the scale factor but also the relationship of the particle size and number with the radius of the curve of the boundary geometry.

Size-controlled Chevrel Mo6S8 as Cathode Material for Mg Rechargeable Battery

  • Ryu, Anna;Park, Min-Sik;Cho, Woosuk;Kim, Jeom-Soo;Kim, Young-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.3033-3038
    • /
    • 2013
  • Nanoscale Chevrel $Mo_6S_8$ powders are synthesized by molten salt synthesis. Synthesized $Mo_6S_8$ powders have different mean particle sizes which are dependent on a ratio of salt to precursor. The particle sizes of $Mo_6S_8$ powders changes along with the ratio increase. $Mo_6S_8$ (6:1) demonstrates the best electrochemical characteristics among the synthesized $Mo_6S_8$ powders although the $Mo_6S_8$ (4:1) has the smallest particle size. $Mo_6S_8$ (6:1) shows a reversible capacity of 83.9 $mAhg^{-1}$, which is 27.5% and 33% improved value over $Mo_6S_8$ (2:1) and $Mo_6S_8$ (4:1) at a current density of 0.2C, respectively. The superior electrochemical properties of $Mo_6S_8$ (6:1) are attributed to the balanced particle size which provides proper contact area with electrolyte and the shortened $Mg^{2+}$ diffusion length. The $Mo_6S_8$ (4:1) has the smallest particle size but further reduction of particle size from $Mo_6S_8$ (6:1) is not advantageous.