• Title/Summary/Keyword: Particle size measurement

Search Result 442, Processing Time 0.025 seconds

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

Properties of Silicone Rubber According to the Addition of Different Particle Size of ATH (ATH 의 입도에 따른 실리콘 고무의 특성)

  • Park, Hyo-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Kim, Dae-Whan;Lee, Hoo-Bum;Oh, Se-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.216-219
    • /
    • 2002
  • Much quantity of anti-tracking agent, ATH is added to the silicone rubber for the protection of silicone rubber against surface discharge. Hydrophobicity recovery properties of silicone rubber could be different by the content, surface treatment state and particle size of ATH. Because hydrophobicity of silicone rubber is depend much on the surface state of ATH. In this paper, the properties of silicone rubber is investigated according to the addition of different particle size of ATH to the silicone rubber. Hydrophobicity recovery properties and arc resistance of silicone rubber were investigated according to the addition of different particle size of ATH. Hydrophobicity recovery properties of silicone rubber were evaluated by the measurement of contact angle.

  • PDF

Characteristics of particles at Kosan, Cheju Island: Intensive study results duting March 11 .sim. 17 1994 (제주도 고산지역 입자특성 : 1994년 3월 11일 - 17일 측정결과)

  • 김용표;심상규;문길주;백남준;김성주;허철구;강창희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.263-272
    • /
    • 1995
  • Characteristics of anbient at Korean, Cheju Island have been studied during the intensive field study period on March 11 .sim. 17, 1994 in collaboration with other research organizations from Korea and abroad. The particle size distribution was measured using an Electrical Aerosol Analyzer(EAA) and an Optical particle Counter(OPC). Fine particles(PM1 and PM3) have been collected by filter pack samplers and their ionic compositions have been analyzed. sampling errors inherent to the filter pack sampling method are discussed and the method to analyze those errors are presented. The rine mass concentrations of this study show very similar mass concentrations when Seoul is clear. This is somewhat surprising result, because the most of researchers believe that Kosan is one of the cleanest area in Korea. Bimodal volume size distributions with peak values around 0.1 .sim. 0.2.mu.m and 3.mu.m in particle dimeter were observed for most of the measurement period, particle mass loadings and ionic composition data show a large fraction of particles are from non-sea salt origins. Estimation of water content and acidity of particles based on measurement by a gas/particle equilibrium model, SCAPE, reveals that the pH values of particles are comparable to or lower than those estimated based on measurements in Los Angeles, U.S.A. during the SCAQS study. These findings with the meteorological conditions during the study period suggest that the particles collected during the period have originated from outside Cheju Island.

  • PDF

Mass Prediction of Various Water Cluster Ions for an Accurate Measurement of Aerosol Particle Size Distribution (에어로솔 입자의 정밀입경분포 측정을 위한 물분자 클러스터 이온의 질량예측)

  • Jung, Jong-Hwan;Lee, Hye-Moon;Song, Dong-Keun;Kim, Tae-Oh
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.752-759
    • /
    • 2007
  • For an accurate measurement of aerosol particle size distribution using a differential mobility analyser (DMA), a new calculation process, capable of predicting the masses for the various kinds of water cluster ions generated from a bipolar ionizer, was prepared by improving the previous process. The masses for the 5 kinds of positive and negative water cluster ions produced from a SMAC ionizer were predicted by the improved calculation process. The aerosol particle charging ratios calculated by applying the predicted ion masses to particle charging equations were in good accordance with the experimentally measured ones, indicating that the improved calculation process are more reasonable than the previous one in a mass prediction of bipolar water cluster ions.

Study of Incipient Soot Particles with Measuring Methodologies (입자 측정방법을 통한 초기 수트입자 연구)

  • Lee Eui Ju
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • The physical characteristics of soot near the soot inception point were investigated with various measurements. In-situ measurements of particle size and volume fraction were introduced based on time resolved laser-induced incandescence (TIRE-LII) and laser-induced ion mobility (LIIM). The one has more convenience and accuracy than conventional LII technique and the other works best for particle sizes of a few nanometers at high concentrations in a uniform concentration field. A complementary ex-situ measurement of particle size is nano differential mobility analyzer (Nano-DMA), which recently developed for measuring particle sizes between 2nm and 100nm and provides high-resolution size information for early soot. Particles will be also collected on transmission electron microscope (TEM) grids using rapid thermophoretic sampling and analyzed for morphology. These measurements will allow fresh and original insight into the characterizing soot inception process. The measured physical properties of incipient soot will clarify the controlling growth mechanism combined with chemical ones, and the dominant mechanism for soot modeling can be deduced from the information.

  • PDF

TEM Specimen Preparation Method of Gibbsite Powder for Quantitative Structure Analysis (정량 구조 분석을 위한 Gibbsite 분말의 TEM 시편 준비법)

  • Kim, Young-Min;Jeung, Jong-Man;Lee, Su-Jeong;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.311-317
    • /
    • 2002
  • There is great requirement on the TEM specimen preparation method with particle size selectivity as a prerequisite for the quantitative structure analysis on the materials such as gibbsite powder, which generally forms a large agglomerate and shows a variation of transition process depending on their sizes. In this experiment, we made an attempt to give a methodology for the TEM specimen preparation of powder with the size selectivity. After mixing 1 wt% gibbsite powder with ethanol solvent, gibbsite suspension was prepared by application of ball-milling and ultrasonification with addition of 0.25 vol% dispersion agent, Darvan C, which was diluted into distilled water by the ratio 1:19. Appling the static sedimentation method to gibbsite suspension after estimation of the sedimentation time by the measurement of accumulative concentration variation, we acquired TEM specimens with well-dispersed and size selected gibbsite particles in nm scale. Overall picture of each sample was taken by SEM and morphology of each dispersed particle was imaged by TEM. Raw and processed gibbsite powders were also examined by XRD to investigate whether they were suffered from phase change during the process or not.

A Study on Measurements of PM Size in a Single Cylinder Common-rail Diesel Engine Exhaust using LII Method (레이저 유도 백열법을 이용한 단기통 커먼레일 디젤 엔진 배기에서의 PM 크기 계측에 관한 연구)

  • Chun, Hong-Sik;Kim, Hui-Jun;Ryu, Hoon-Chul;Park, Jong-Il;Hahn, Jae-Won;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.95-102
    • /
    • 2006
  • Recently particulate matter(PM) emission regulations are becoming more strict for diesel engines. There is increasing interest for measuring not only concentration but also size of the particles. Laser-induced incandescence (LII) has emerged as a promising technique for measuring particle volume fraction and size. In this study, the Simple Time Resolved-LII method was applied to exhaust of Ethylene diffusion flame and diesel engine exhaust for measuring soot and PM size. The particle size data from LII technique were calibrated using Field Emission Scanning Electron Microscope(FE-SEM) and Transmission Electron Microscope(TEM) photographs. In diesel engine experiments for particle size measurement, results from LII measurement are in a good agreement with those from TEM photograph, and difference between two measurements was less than 16%.

The Effect of Particle Size on Combustion Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek;Jeon, Heung-Shin;Wongee Chun
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.162-169
    • /
    • 1997
  • The particle size effect on the combustion characteristics of pulverized coal was investigated in the cylindrical-shape, horizontal furnace, fired in the range of 8.8∼10.6 kw. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Burnout behavior of pulverized coal flame were determined through the measurement of stable species concentrations (CO$_2$and H$_2$O). Concentrations of CO$_2$were compared with the theoretical values and the result showed good agreement. Thermal behavior of pulverized coal flame were determined as maximum flame temperatures occurred at fuel-rich conditions in every case. Flame lengths were also determined by decreasing with the particle size decrease. The flame length of the fine sized coal sample was comparable to that produced by distillate oil. The color of the coal flames ranged from orange to yellow, with the flame of the fine size fraction being brighter and yellower than the others.

  • PDF

Characterization of Particle Size Distribution of Infiltrated Secondhand Smoke through the Gap in a Single Glazed and a Secondary Glazed Window by Indoor and Outdoor Pressure Differences (실내외 압력 차에 따른 단창과 이중창의 틈새로 침투된 간접흡연의 입자 크기 분포 특성)

  • Kim, Jeonghoon;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.4
    • /
    • pp.360-369
    • /
    • 2018
  • Objectives: Outdoor tobacco smoke can penetrate into the indoor environment through cracks in the building envelope. This study aimed to characterize the particle size distribution of infiltrated secondhand smoke (SHS) through the gap in a single glazed and a secondary glazed window according to pressure differences in a chamber. Methods: Two polyvinyl chloride sliding windows were evaluated for infiltration, one with a glazed window and the other with a secondary glazed window. Each window was mounted and sealed in a polycarbonate chamber. The air in the chamber was discharged to the outside to establish pressure differences in the chamber (${\Delta}P$). Outdoor smoking sources were simulated at a one-meter distance from the window side of the chamber. The particle size distribution of the infiltrated SHS was measured in the chamber using a portable aerosol spectrometer. The particle size distribution of SHS inside the chamber was normalized by the outdoor peak for fine particles. Results: The particle size distribution of SHS inside the chamber was similar regardless of window type and ${\Delta}P$. It peaked at $0.2-0.3{\mu}m$. Increases in particulate matter (PM) concentrations from SHS infiltration were higher with the glazed window than with the secondary glazed window. PM concentrations of less than $1{\mu}m$ increased as ${\Delta}P$ was increased inside the chamber. Conclusions: The majority of infiltrated SHS particles through window gap was $0.2-0.3{\mu}m$ in size. Outdoor SHS particles infiltrated more with a glazed window than with a secondary glazed window. Particle sizes of less than $1{\mu}m$ were associated with ${\Delta}P$. These findings can be a reference for further research on the measurement of infiltrated SHS in buildings.

Effect of Performance of Aerosol Charge Neutralizers on the Measurement of Highly Charged Particles Using a SMPS (에어로졸 중화기의 성능이 고하전 입자의 크기분포 측정에 미치는 영향)

  • Ji, Jun-Ho;Bae, Swi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1498-1507
    • /
    • 2003
  • A SMPS(scanning mobility particle sizer) system measures the number size distribution of particles using electrical mobility detection technique. An aerosol charge neutralizer, which is a component of the SMPS, is a bipolar charger using a radioactive source to apply an equilibrium charge distribution to aerosols of unknown charge distribution. However, the performance of aerosol charge neutralizers is not well known, especially for highly charged particles. In this study, the effect of the particle charging characteristics of two aerosol charge neutralizers on the measurement using a SMPS system was experimentally investigated for highly charged polydisperse particles. One has radioactive source of $^{85}$ Kr (beta source, 2 mCi) and the other has $^{210}$ Po (alpha source, 0.5 mCi). The air flow rate passing through each aerosol charge neutralizer was changed from 0.3 to 3.0 L/min. The results show that the non-equilibrium character in particle charge distribution appears as the air flow rate increases although the particle number concentration is relatively low in the range of 1.5∼2x10$^{6}$ particles/㎤. The low neutralizing efficiency of the $^{85}$ Kr aerosol charge neutralizer for highly charged particles can cause to bring an artifact in the measurement using a SMPS system. However, the performance of the $^{210}$ Po aerosol charge neutralizer is insensitive to the air flow rate.