• Title/Summary/Keyword: Particle size measurement

Search Result 442, Processing Time 0.026 seconds

Physiochemical Properties of Chicken Breast Sausage with Red Ginseng Marc Powder

  • Shin, Sun-Hwa;Choi, Won-Seok
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.486-503
    • /
    • 2022
  • This study explored the physiochemical and rheological properties of chicken breast sausages containing red ginseng marc (RGM) which contains useful components but is discarded. When compared to the control group, the use of RGM significantly increased the water holding capacity (WHC) as the particle size increased. As for the change in color value, addition of RGM resulted in an increase in a and b values; as the quantity was increased and particle size decreased, the a and b values increased significantly. The smaller the particle size of RGM, the greater was the radical scavenging activity. According to the results of the measurement of the viscoelasticity of chicken breast sausage containing RGM, the G' and G'' values increased with increasing amounts of RGM and particle size. Neither the addition of RGM nor its amount or particle size had any significant effect on gel formation temperature. The texture profile analysis (TPA) experiment examined the average TPA measurements of each sample under different measurement conditions, and no significant difference between the RGM and control groups were observed. In conclusion, when RGM is used in chicken breast sausages, the WHC, antioxidant capacity, and viscoelastic properties are affected. RGM can possibly be utilized in high value-added processed meat products if its quantity and particle size are altered based on product characteristics.

Comparison Study of the TSI Aerodynamic Particle Sizer 3321, Grimm Aerosol Spectrometer 1.109 and HCT Particle Sensor 3030 for PM2.5 measurement (TSI Aerodynamic Particle Sizer 3321, Grimm Aerosol Spectrometer 1.109, HCT Particle Sensor 3030을 이용한 PM2.5 측정결과 비교)

  • Kim, Du-Yong;Chung, Hyuck;Park, Jae-Hong;Hyun, Jun-Ho;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Three different commercial particle counters were used to measure the PM2.5 particles in this study. An Aerosol Spectrometer (AS) 1.109 model of Grimm and a Particle Sensor (PS) 3030 model of HCT were compared with an Aerodynamic Particle Sizer (APS) 3321 model of TSI. The responses of these instruments were compared for four sizes ($1.0{\mu}m$, $1.5{\mu}m$, $2.0{\mu}m$ and $2.5{\mu}m$) of polystyrene latex (PSL) particles and indoor air particles of the office room. The mode diameter, particle size distribution and total particle number concentration of PSL particles were measured by each instrument. In the office room, the total particle number concentration was measured for 25 minutes. In results of particle size distribution and mode diameter, the APS 3321 (52 size-channels) was more accurate than the AS 1.109 (31 size-channels) and PS-3030 (10-szie channels) since the APS has more number of size-channels than the other instruments. However, AS 1.109 and PS-3030 provided similar results of total particle number concentration to those from the APS 3321. In results of office room test, there were no significant difference from each instrument similar to results of PSL test.

Submicrometer Particle Size Distribution of Emissions from Diesel Engines (디젤엔진에서 배출되는 미세 입자의 크기 분포)

  • 김민철;권순박;이규원;김종춘;류정훈;엄명도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.657-665
    • /
    • 1999
  • Particulate matter produced by diesel engines is of concern to cngine manufactures because of its environmental impact. The majority of diesel particles are in the range of smaller than 1 ${\mu}{\textrm}{m}$. Because of their tiny volume, ultrafine diesel particles contribute very little to the total mass concentration which is currently regulated for automobile emissions. Ultrafinc particles are known to have deleterious effects upon human health cspecially because they penetrate deeply human respiratory tract and have negative effects on the health. In this study, the engine exhaust gas was diluted in a dilution tunnel and the particle size distribution was measured using the scanning mobility particel sizer system. Measurements of the number and the mass concentrations of the diesel exhaust were made under different engine ooperating conditions. The dilution sampling system provided a common basis for collection of the exhaust by cooling and diluting the source emission prior to the measurement. The measurement results showed that the particle size distributions of the exhaust from the diesel vehicles equipment with either heavy-duty or lignt-duty diesel engines, were similar in the particle size range of 0.08~0.2${\mu}{\textrm}{m}$.

  • PDF

Size Measurement of Radioactive Aerosol Particles in Intense Radiation Fields Using Wire Screens and Imaging Plates

  • Oki, Yuichi;Tanaka, Toru;Takamiya, Koichi;Osada, Naoyuki;Nitta, Shinnosuke;Ishi, Yoshihiro;Uesugi, Tomonori;Kuriyama, Yasutoshi;Sakamoto, Masaaki;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2016
  • Background: Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. Materials and Methods: A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of $^{11}C$-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. Results and Discussion: The size distribution for $^{11}C$-bearing aerosol particles was found to be ca. $70{\mu}m$ in geometric mean diameter. The size was similar to that for $^7Be$-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. Conclusion: The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

Development of Image Processing Algorithm Using Boundary Curvature Information in Particle Size Measurement (영상 처리 기법에서 곡률을 이용한 입경 측정 알고리듬의 개발)

  • 김유동;이상용;김상수
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.10
    • /
    • pp.1445-1450
    • /
    • 2002
  • In the present study, a new pattern recognition algorithm was proposed to size spray particles using the boundary curvature information. Conceptually, this algorithm has an advantage over the others because it can identify the particle size and shape simultaneously, and also can separate the overlapped particles more effectively. Curvature of a boundary was obtained from the change of the slopes of two neighboring segments at the corresponding part. The algorithm developed in this study was tested by using an artificially prepared image of a group of spherical particles which were either isolated or overlapped. Particle sizes obtained from the measured curvatures agreed well with the true values. By detecting abrupt changes of the curvature along the image boundary, the element particles could be separated out from their overlapped images successfully.

Formation of Silicon Particles Using $SiH_4$ pyrolysis at atmospheric pressure (상압에서 열분해법을 이용한 실리콘 입자 제조)

  • Woo, Dae-Kwang;Nam, Kyung-Tag;Kim, Young-Gil;Kim, Kwang-Su;Kang, Yun-Ho;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.126-129
    • /
    • 2007
  • The particle formation using pyrolysis has many advantages over other particle manufacturing techniques. The particles by pyrolysis have relatively uniform size and chemical composition. Also, we can easily produce high purity particles. Thus, we studied the formation of silicon particles by pyrolysis of 50% $SiH_4$ gas diluted in Ar gas. A pyrolysis furnace was used for the thermal decomposition of $SiH_4$ gas at $800^{\circ}C$ and atmospheric pressure. The aerosol flow from furnace is separated into two ways. The one is to the Scanning Mobility Particle Sizer (SMPS) for particle size distribution measurement and the other is to the particle deposition system. The produced silicon particles are deposited on the wafer in the deposition chamber. SEM measurement was used to compare the particle size distribution results from the SMPS. Depending on the experimental conditions, particles of high concentration in the $30\sim80$ nm size range were generated.

  • PDF

Measurement of Monodisperse Particle Charging in Unmagnetized and Magnetized Plasmas (자화된 플라즈마 내에서의 단분산 입자의 하전량 특정)

  • 한장식;안강호;김곤호
    • Journal of the Semiconductor & Display Technology
    • /
    • v.1 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Understanding of charging properties of a small particle is necessary to control the particle contamination and to improve productivity of the electronic device in the plasma aided semiconductor manufacturing processes. In this study, the effects of both magnetic field and particle size on the charging properties are experimentally investigated in collisional dusty plasmas. The experiments carried out in the system consisted of a monodisperse particle generation system, a DC magnetized plasma generation system and a charge measurement system. The plasma chamber is made of cross-shape Pyrex surrounded by magnetic bucket (composed of 12 permanent magnetic bar) to confine the plasma. DC magnetic field up to 250G are applied to the plasma zone by external magnetic coil. Previous work shows the charging effect clearly increase with increasing the size of the particle and plasma density, as it was expected.

  • PDF

Study on the Contribution of Mixing Effects in Sampling Tube and Condensation Nuclei Counter(CNC) to the measurement of size distribution obtained using Differential Mobility Analyzer and CNC (Differential Mobility Analyzer(DMA)와 Condensation Nuclei Counter(CNC)를 이용한 입자크기 분포 측정에서 샘플링 튜브와 CNC에서의 혼합 효과가 입자 크기 분포 측정에 미치는 영향에 관한 연구)

  • Lee, Youn-Soo;Ahn, Kang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.104-109
    • /
    • 2001
  • The time to measure the size distribution using Condensation Nuclei Counter(CNC) and Differential Mobility Analyzer(DMA) can be shortened by classifying particles ramping the DMA voltage exponentially and continuously. In measurement, particles sampled at different time are mixed together going through sampling tube and CNC. Because the size distribution is inversed by using detector responses to sampling time intervals in this accelerated method, the mixing effects give inversion errors to the size distribution. The mixing effects can be considered by appling the transfer function with mixing effects to the data inversion. The inversion considering this effects gives birth to the size distribution shifted to the opposite direction of the size scanning.

  • PDF

Effects of $SiO_2$ Particle-size on Fabrication Properties of LPS-SiC Ceramics (LPS-SiC 세라믹스의 제조특성에 미치는 $SiQ_2$ 입자크기의 영향)

  • Kim, Seong-Hoon;Yoon, Han-Ki;Kim, Bu-An
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.162-165
    • /
    • 2006
  • In this study, Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method with $\beta$-SiC powder whose a particle size is 30nm and less on the average in argon condition at 1780 and $1800^{\circ}C$ under 20MPa. Alumina ($Al_2O_3$), yttria ($Y_2O_3$) and silica ($SiO_2$) were used for sintering additives. To investigate effects of particle-size and temperature on $SiO_2$, LPS-SiC was fixed $Al_2O_3$, $Y_2O_3$ and then particle-size of $SiO_2$ were changed as two kinds. The system of particle-size and temperature on sintering additives which affects a property of sintering os well os the influence depending on particle-size and temperature of sintering additives were investigated by measurement of sintering properties. Such as measurement of sintering density, vikers hardness and observing of microstructure were investigated to make sure of the optimum condition which is about matrix of $SiC_f/SiC$ composites. Base on the composition of sintering additives, microstructure and sintering property correlation, the effect of particle-size of sintering additives are discussed. An experimental method to investigate the dynamic characteristics of bums in extreme environmental condition is established.

  • PDF

Determination of In-focus Criteria In Image Processing Method for Particle Size Measurement (입경측정을 위한 영상처리기법에서 입자 초점면 존재 판단 기준의 설정)

  • Koh, Kwang Uoong;Kim, Joo Youn;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.398-407
    • /
    • 1999
  • In the present image processing technique, the concept of the gradient indicator(GI) has been introduced to find out the depth-of-field in sizing large particles ranging from $30{\mu}m$ to $30{\mu}m$ where using of the concept of the normalized contrast value(VC) is not appropriate. The gradient indicator is defined as the ratio of the local value to the maximum possible value of the gray-level gradient in an image frame. The gradient indicator decreases with the increases of the particle size and the distance from the exact focal plane. A particle is considered to be in focus when the value of the gradient indicator at its image boundary stays above a critical value. This critical gradient indicator($GI_{critical}$) is defined as the maximum gradient indicator($GI_{max}$) subtracted by a constant ${\Delta}GI$ which is to account for the particle-size effect. In the present ca.so, the value of ${\Delta}GI$ was set to 0.28 to keep the standard deviation of the measured particles mostly within 0.1. It was also confirmed that, to find the depth-of-field for small particles(${\leq}30{\mu}m$) with the same measurement accuracy, tho concept of the critical normalized contrast($VC_{critical}$) is applicable with 85% of the maximum normalized contrast value($VC_{max}$). Finally, the depth-of-field was checked for the size range between $10{\mu}m$ and $300{\mu}m$ when the both in-focus criteria ($GI_{critical}$ and $VC_{critical}$) were adopted. The change of the depth-of-field with the particle size shows good linearity in both the VC-applicable and the GI-applicable ranges with a reasonable accuracy.