• Title/Summary/Keyword: Particle size distribution (PSD)

Search Result 44, Processing Time 0.018 seconds

Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study

  • Hazrati, Hossein;Karimi, Naser;Jafarzadeh, Yoones
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this study, the performance and antifouling properties of polysulfone (PSf) and polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) membranes in a membrane bioreactor (MBR) were investigated. The membranes were prepared via phase inversion method, and then characterized by a set of analyses including contact angle, porosity and water flux and applied in a lab-scale MBR system. Soluble microbial product (SMP), extracellular polymeric substance (EPS), FTIR, gel permission chromatography (GPC) and particle size distribution (PSD) analyses were also carried out for MBR system. The results showed that the MBR with PSf membrane had higher hydrophobic organic compounds which resulted in formation of larger flocs in MBR. However, in this MBR had high compressibility coefficient of cake layer was higher (n=0.91) compared to MBR with PVDF/PVP membrane (n=0.8); hence, the fouling was more profound. GPC analysis revealed that compounds with molecular weight lower than 2 kDa are more formed on PSf membrane more than PVDF/PVP membrane. The results of FTIR analysis confirmed the presence of polysaccharide and protein compounds on the cake layer of both membranes which was in good agreement with EPS analysis. In addition, the results showed that their concentration was higher for the cake on PSf membrane.

Emission Characteristics of Fine Particles, Vanadium and Nickel from Heavy Oil Combustion (중유 연소 시 발생하는 미세입자 및 니켈과 바나듐의 대기 중 배출특성)

  • Jang, Ha-Na;Kim, Sung-Heon;Lee, Ju-Hyung;Hwang, Kyu-Won;Yoo, Jong-Ik;Sok, Chong-Hui;Seo, Yong-Chil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2006
  • This study identified a particle size distribution (PSD) of fine particulate matter and emission characteristics of V and Ni by the comparison between anthropogenic sources of oil combustion (industrial boiler, oil power plant, etc.) and lab-scale combustion using a drop-tube furnace. In oil combustion source, the mass fraction of fine particles (less than 2.5 micrometers in diameter) was higher than that of coarse particles (larger than 2.5 micrometers in diameter) in $PM_{10}$ (less than 10 micrometers in diameter) as like in lab-scale oil combustion. In addition to this, it was identified that ultra-fine particles (less than 0.1 micrometers in diameter) had a large distribution in fine particles. Toxic metals like V and Ni had large mass fractions in fine particles, and most of all was distributed in ultra-fine particles. Most of ultra-fine particles containing toxic metals have been emitted into ambient by combustion source because it is hard to control by the existing air pollution control device. Hence, we must be careful on these pollutants because it is obvious that these are associated with adverse health and environmental effect.

Characterization and Formation Mechanisms of Clogging Materials in Groundwater Wells, Mt. Geumjeong Area, Busan, Korea (부산 금정산 일대 지하수공내 공막힘 물질의 특징과 형성원인)

  • Choo, Chang-Oh;Hamm, Se-Yeong;Lee, Jeong-Hwan;Lee, Chung-Mo;Choo, Youn-Woo;Han, Suk-Jong;Kim, Moo-Jin;Cho, Heuy-Nam
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.67-81
    • /
    • 2012
  • The physical, chemical, and biological properties of clogging materials formed within groundwater wells in the Mt. Geumjeong area, Busan, Korea, were characterized. The particle size distribution (PSD) of clogging materials was measured by a laser analyzer. XRD, SEM, and TEM analyses were performed to obtain mineralogical information on the clogging materials, with an emphasis on identifying and characterizing the mineral species. In most cases, PSD data exhibited an near log-normal distribution; however, variations in frequency distribution were found in some intervals (bi-or trimodal distributions), raising the possibility that particles originated from several sources or were formed at different times. XRD data revealed that the clogging materials were mainly amorphous ironhydroxides such as goethite, ferrihydrite, and lapidocrocite, with lesser amounts of Fe, Mn, and Zn metals and silicates such as quartz, feldspar, micas, and smectite. Reddish brown material was amorphous hydrous ferriciron (HFO), and dark red and dark black materials were Fe, Mn-hydroxides. Greyish white and pale brown materials consisted of silicates. SEM observations indicated that the clogging materials were mainly HFO associated with iron bacteria such as Gallionella and Leptothrix, with small amounts of rock fragments. In TEM analysis, disseminated iron particles were commonly observed in the cell and sheath of iron bacteria, indicating that iron was precipitated in close association with the metabolism of bacterial activity. Rock-forming minerals such as quartz, feldspar, and micas were primarily derived from soils or granite aquifers, which are widely distributed in the study area. The results indicate the importance of elucidating the formation mechanisms of clogging materials to ensure sustainable well capacity.

Investigation of influence of nano H-ZSM-5 and NH4-ZSM-5 zeolites on membrane fouling in semi batch MBR

  • Sajadian, Zahra Sadat;Hazrati, Hossein;Rostamizadeh, Mohammad
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.183-190
    • /
    • 2020
  • The objectives of this research were the reduction of membrane fouling and improvement of sludge properties by using synthesized H-ZSM-5 and NH4-ZSM-5 zeolites. These two nano zeolites were synthesized and added to the membrane bioreactor (MBR). Three similar MBRs with the same operational condition were used in order to evaluate their effect on the mentioned matters. The evaluated parameters were trans-membrane pressure (TMP), Fourier-transform infrared spectroscopy (FTIR), particle size distribution (PSD), soluble microbial product (SMP), extracellular polymeric substances (EPS) and, excitation-emission matrix (EEM). The MBR0 was without any additional zeolite while 0.4 g/L of H-ZSM-5 and NH4-ZSM-5 were added to MBRHZSM-5 and MBRNH4ZSM-5, respectively. The COD removal of the MBR0, MBRH-ZSM-5 and MBRNH4-ZSM-5 were 87.5%, 93.3% and 94.6%, respectively. The TMP of the MBRH-ZSM-5 was 45% less than MBR0 whereas the reduction for MBRNH4-ZSM-5 was 65.5%. Also results showed that both H-ZSM-5 and NH4-ZSM-5 caused reduction in protein and polysaccharide related EPS but the NH4-ZSM-5 had better performance toward the elimination of organic compounds.