• Title/Summary/Keyword: Particle simulation method

Search Result 556, Processing Time 0.035 seconds

Fireworks Modeling Technique based on Particle Tracking (입자추적기반의 불꽃 모델링 기법)

  • Cho, ChangWoo;Kim, KiHyun;Jeong, ChangSung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.102-109
    • /
    • 2014
  • A particle system is used for modeling the physical phenomenon. There are many traditional ways for simulation modeling which can be well suited for application including the landscapes of branches, clouds, waves, fog, rain, snow and fireworks in the three-dimensional space. In this paper, we present a new fireworks modeling technique for modeling 3D firework based on Firework Particle Tracking (FPT) using the particle system. Our method can track and recognize the launched and exploded particle of fireworks, and extracts relatively accurate 3D positions of the particles using 3D depth values. It can realize 3D simulation by using tracking information such as position, speed, color and life time of the firework particle. We exploit Region of Interest (ROI) for fast particle extraction and the prevention of false particle extraction caused by noise. Moreover, Kalman filter is used to enhance the robustness in launch step. We propose a new fireworks particle tracking method for the efficient tracking of particles by considering maximum moving range and moving direction of particles, and shall show that the 3D speeds of particles can be obtained by finding the rotation angles of fireworks. Also, we carry out the performance evaluation of particle tracking: tracking speed and accuracy for tracking, classification, rotation angle respectively with respect to four types of fireworks: sphere, circle, chrysanthemum and heart.

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

A Numerica analysis on the lift-off motion of Free Conducting Particle in GIS (GIS내에 함유된 자유 도전성 파티클의 거동해석)

  • Lee, Bang-Wook;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1925-1928
    • /
    • 1996
  • In this work, the behavior of conducting wire type particles existing inside the cylinder type coaxial electrode has been systematically investigated by charge simulation method and electrostatic force analysis from the view point of the acquired charging before being lifted off into the gap under the high ac voltage. Spheroidal charge are adopted as a image charge for the CSM analysis in order to calculate the acquired charges of the particles which are erected on the surface of the outer electrode. For this purpose, different material of the particle and their lengths and diameters have been considered in view to calculate their lift-off field, acquired charge and to understand their effect on the lift-off voltage. The results imply that the particle lengths and diameter have an different influence on the particle behavior in GIS system.

  • PDF

Development of a New 2-Frame Particle Tracking Algorithm Using Match Probability (일치확률방식의 2-프레임 PTV 알고리듬 개발)

  • 백승조;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1741-1748
    • /
    • 1995
  • A new particle tracking algorithm using the concept of match probability between two consequent image frames has been developed to obtain an instantaneous 2-dimensional velocity field. A computer simulation has been carried out to check the performance and usefulness of the developed algorithm by comparing with the conventional 4-frame Particle Tracking Velocimetry(PTV) method. As a result the newly developed algorithm shows very good performance. Although the major part of the developed algorithm is time-consuming iterative updating routine of match probability, computational elapse time to get the resonable results is a very short compared with the 4-frame PTv.Additionally, the present 2-frame PTV algorithm recovers more velocity vectors and has higher dynamic range and lower error ratio compared with the conventional 4-frame PTV.

Effect on Vessel Motion Caused by Mitigation of Sloshing Impact Loads using Floaters (플로터를 이용한 슬로싱 충격하중 저감효과가 선체운동에 미치는 영향)

  • Nam, Jung-Woo;Kim, Kyung-Sung;Hwang, Sung-Chul;Heo, Jae-Kyung;Park, Jong-Chun;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.50-56
    • /
    • 2012
  • When a liquid cargo tank is partially filled with fluid, internal impact loads can be occurred from the vessel's motions. In this study, liquid sloshing problems with a thin top layer of particles with a lighter density than water and the coupling effects of the liquid-sloshing/vessel-motion were investigated in order to reduce the sloshing-induced impact loads. The PNU-MPS (Pusan-National-University-modified Moving Particle Simulation) method for solving the liquid motion inside a tank and the CHARM3D BEM (Boundary Element Method) based time-domain ship motion analysis program for vessel-motion simulation were coupled. From the simulation results, we could see that the floaters seemed to be quite effective at reducing the sloshing impact loads in the case of tank-only sloshing problems, but not as much for the coupling problem with vessel motion.

An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity

  • Shimizu, Yuma;Khayyer, Abbas;Gotoh, Hitoshi
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-86
    • /
    • 2022
  • A refined projection-based purely Lagrangian meshfree method is presented towards reliable numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with incorporation of volume fraction. These principal equations of mixture are discretized in the context of Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), resulting in modified source term. The linear and nonlinear force terms are included in momentum equation to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical examples including the interactions between fluid flow and saturated/unsaturated porous media of uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of particle volumes and regular distributions of particles at the interface between fluid and porous media.

A Fault Detection and Exclusion Algorithm using Particle Filters for non-Gaussian GNSS Measurement Noise

  • Yun, Young-Sun;Kim, Do-Yoon;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.255-260
    • /
    • 2006
  • Safety-critical navigation systems have to provide 'reliable' position solutions, i.e., they must detect and exclude measurement or system faults and estimate the uncertainty of the solution. To obtain more accurate and reliable navigation systems, various filtering methods have been employed to reduce measurement noise level, or integrate sensors, such as global navigation satellite system/inertial navigation system (GNSS/INS) integration. Recently, particle filters have attracted attention, because they can deal with nonlinear/non-Gaussian systems. In most GNSS applications, the GNSS measurement noise is assumed to follow a Gaussian distribution, but this is not true. Therefore, we have proposed a fault detection and exclusion method using particle filters assuming non-Gaussian measurement noise. The performance of our method was contrasted with that of conventional Kalman filter methods with an assumed Gaussian noise. Since the Kalman filters presume that measurement noise follows a Gaussian distribution, they used an overbounded standard deviation to represent the measurement noise distribution, and since the overbound standard deviations were too conservative compared to the actual distributions, this degraded the integrity-monitoring performance of the filters. A simulation was performed to show the improvement in performance of our proposed particle filter method by not using the sigma overbounding. The results show that our method could detect smaller measurement biases and reduced the protection level by 30% versus the Kalman filter method based on an overbound sigma, which motivates us to use an actual noise model instead of the overbounding or improve the overbounding methods.

  • PDF

Correlation Between Mechanical Behavior and Electrical Resistance Change in Carbon Particle Dispersed Plastic Composite

  • Song, D.Y.;Takeda, N.;Kim, J.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.377-382
    • /
    • 2001
  • Mechanical behavior and electrical resistance change of CPDP (carbon particle dispersed plastic) composite consisting of epoxy resin and conductive carbon particle were investigated under monotonic loading and repeated loading-unloading. The electrical resistance almost linearly increased with increasing strain during loading and the residual electrical resistance was observed even after removing load. The value of the residual electrical resistance was dependent on the maximum strain under the applied stress. This result suggests that the estimation of maximum strain (i.e., damage) is possible by the measuring electrical resistance of composite. The behavior of electrical resistance change during and after loading was discussed on the basis of the results of microscopic deformation and fracture observation. Moreover, the relationship between the volume fraction of carbon particle and the electrical resistivity of CPDP was investigated in relation to the percolation theory. Simulation model of percolation structure was established by Monte Carlo method and the simulation result was compared to the experimental results. The electrical resistance change under applied loading was analyzed quantitatively using the percolation equation and a simple model for the critical volume fraction of carbon particle as a function of the mechanical stress. It was revealed that the prediction was in good agreement with the experimental result except in the region near the failure of material.

  • PDF

A Study on Power System State Estimation and bad data detection Using PSO (PSO기법을 이용한 전력계통의 상태추정해법과 불량정보처리에 관한 연구)

  • Ryu, Seung-Oh;Jeong, Hee-Myung;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.261-263
    • /
    • 2008
  • In power systems operation, state estimation takes an important role in security control. For the state estimation problem, the weighted least squares(WLS) method and the fast decoupled method have been widely used at present. But these algorithms have disadvantage of converging local optimal solution. In these days, a modern heuristic optimization method such as Particle Swarm Optimization(PSO), are introduced to overcome the problems of classical optimization. In this paper, we proposed particle swarm optimization (PSO) to search an optimal solution of state estimation in power systems. To demonstrate the usefulness of the proposed method, PSO algorithm was tested in the IEEE-57 bus systems. From the simulation results, we can find that the PSO algorithm is applicable for power system state estimation.

  • PDF