• Title/Summary/Keyword: Particle scavenging

Search Result 43, Processing Time 0.094 seconds

Particle Scavenging Properties of Rain Clarified by a Complementary Study with Bulk and Semi-bulk Samples

  • Ma, Chang-Jin;Kang, Gong-Unn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.177-186
    • /
    • 2018
  • It is a well-known fact that precipitation plays an important role in capturing ambient particles, however, the details of particle scavenging properties have not been fully proved. To clarify the particle scavenging properties, a complementary study was carried out with the bulk and semi-bulk rain samples collected in an urban city of Japan. pH showed a continued downturn for a little bit at the beginning rainfall and then a turn-up in the following rainfall. The recorded pH values of rainwater (ranged from 3.5-4.6) demonstrated that the strong acid rain was observed during our field measurements. Compared to the subsequent rainfall, electrical conductivity in the beginning rainfall had about 1.3 times higher level. Sulfur showed an overwhelmingly high concentration compared to other elements in both ambient total suspended particles (TSP) and rain samples. On the contrary to ambient TSP, every element including Ca and Zn in rain showed a continued rise in concentration accompanied by increasing of rainfall amount. During the first period of the rainfall there was no meaningful change in elemental carbon concentration, however, it was largely increased (up to $0.2mg\;L^{-1}$) in the sequential rainfall (4.0-4.5 mm rainfall amount). The theoretically calculated number concentration of particles scavenged by raindrops showed a strong decrease of with the increasing droplet diameter regardless of particle type.

ESTIMATION OF RAIN SCAVENGING RATIO FOR PARTICLE BOUND POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS

  • Kim, Hyeon-Kook;Shin, Yong-Seung;Lee, Dong-Soo;Song, Byung-Joo;Kim, Jong-Guk
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.33-44
    • /
    • 2006
  • The objective of this study was to develop and assess a method for estimating the rain scavenging ratios (RSRs) of particle-bound PAHs and PCBs using measured scavenging ratio of particulate matters (PM) and routinely available data of physico-chemical properties of PM. Paired atmospheric and rainwater sampling was conducted for a total of 4 rain events. Assuming equilibrium partitioning in rainwater-gas-PM system, an equation was derived for estimating the RSR of particle-bound chemicals as a function of RSR of PM and three equilibrium partition constants (i.e. dimensionless Henry's law constant, gas-particle partition coefficient, and water-particle partition coefficient). For all PAHs, the model significantly under-predicted the RSR while the model prediction for PCBs agreed with observation mostly within a factor of 5. The RSR model for the chemicals is of limited use as its accuracy critically depends on how close the observed partitioning of the chemicals in the gas-PM-rainwater system is to that estimated under the equilibrium assumption.

The Chemical Nature of Individual Size-resolved Raindrops and Their Residual Particles Collected during High Atmospheric Loading for PM2.5

  • Ma, Chang-Jin;Sera, Koichiro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.176-183
    • /
    • 2017
  • Although it is well known that rain plays an important role in capturing air pollutants, its quantitative evaluation has not been done enough. In this study, the effect of raindrop size on pollutant scavenging was investigated by clarifying the chemical nature of individual size-resolved raindrops and their residual particles. Raindrops as a function of their size were collected using the raindrop collector devised by our oneself in previous study (Ma et al., 2000) during high atmospheric loading for $PM_{2.5}$. Elemental analyses of solid residues and individual residual particles in raindrops were subsequently analyzed by Particle Induced X-ray Emission (PIXE) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX), respectively. The raindrop number concentration ($m^{-2}h^{-1}$) tended to drastically decrease as the drop size goes up. Particle scavenging rate, $R_{sca.}$ (%), based on the actual measurement values were 38.7, 69.5, and 80.8% for the particles with 0.3-0.5, 0.5-1.0, and $1.0-2.0{\mu}m$ diameter, respectively. S, Ca, Si, and Al ranked relatively high concentration in raindrops, especially small ones. Most of the element showed a continuous decrease in concentration with increasing raindrop diameter. The source profile by factor analysis for the components of residual particles indicated that the rainfall plays a valuable role in scavenging natural as well as artificial particles from the dirty atmosphere.

Effect of Particle Size on Physico-Chemical Properties and Antioxidant Activity of Corn Silk Powder (옥수수수염 분말의 입자크기별 이화학적 특성과 항산화활성)

  • Cha, Sun-Mi;Son, Beom-Young;Lee, Jin-Seok;Baek, Seong-Bum;Kim, Sun-Lim;Ku, Ja-Hwan;Hwang, Jong-Jin;Song, Beom-Heon;Woo, Sun-Hee;Kwon, Young-Up;Kim, Jung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.41-50
    • /
    • 2012
  • The study was carried out to analyze the relationship between analysis of antioxidant activity and the level of functional components according to particle size of corn silk. Particle size was classified into 5 groups. By particle size distribution and color difference, the total phenol content and DPPH radical scavenging activity were observed. The particle sizes of corn silk were $199.17{\mu}m$, $178.27{\mu}m$, $85.48{\mu}m$, $27.4{\mu}m$ and $20.97{\mu}m$, respectively. The lightness of colored pigments was increased when the particle size was decreased. The contents of free sugar (fructose, glucose, galactose, sucrose, and maltose) of corn silk were analyzed using a HPLC. The total phenol contents by the particle sizes of corn silk were 2.01 mg/g, 2.02 mg/g, 2.06 mg/g, 2.26 mg/g and 2.26 mg/g, respectively. DPPH radical scavenging activities of samples were 21.00%, 21.75%, 22.90%, 24.35% and 23.67%, respectively. Antioxidative activities of Trolox and Fe(II) in corn silk were measured by ferric reducing antioxidant power (FRAP) assay and Trolox equivalent antioxidant capacity (TEAC) assay. TEAC values of samples were $2.36{\mu}mol$ TE / g dw, $2.81{\mu}mol$ TE / g dw, $3.20{\mu}mol$ TE / g dw, $3.36{\mu}mol$ TE / g dw, and $3.44{\mu}mol$ TE / g dw, respectively. FRAP values of samples were $11.67{\mu}mol$ Fe(II) / g dw, $12.80{\mu}mol$ Fe(II) / g dw, $13.43{\mu}mol$ Fe(II) / g dw, $13.85{\mu}mol$ Fe(II) / g dw and $15.95{\mu}mol$ Fe(II) / g dw, respectively. Total phenolic content and antioxidantive activities based on FRAP assay and TEAC assay were increased with decreasing particle size. In addition, DPPH radical scavenging activity was also increased. A significant correlation was also noted between DPPH radical scavenging activities and the content of phenolic compounds.

Physiochemical Properties of Chicken Breast Sausage with Red Ginseng Marc Powder

  • Shin, Sun-Hwa;Choi, Won-Seok
    • Food Science of Animal Resources
    • /
    • v.42 no.3
    • /
    • pp.486-503
    • /
    • 2022
  • This study explored the physiochemical and rheological properties of chicken breast sausages containing red ginseng marc (RGM) which contains useful components but is discarded. When compared to the control group, the use of RGM significantly increased the water holding capacity (WHC) as the particle size increased. As for the change in color value, addition of RGM resulted in an increase in a and b values; as the quantity was increased and particle size decreased, the a and b values increased significantly. The smaller the particle size of RGM, the greater was the radical scavenging activity. According to the results of the measurement of the viscoelasticity of chicken breast sausage containing RGM, the G' and G'' values increased with increasing amounts of RGM and particle size. Neither the addition of RGM nor its amount or particle size had any significant effect on gel formation temperature. The texture profile analysis (TPA) experiment examined the average TPA measurements of each sample under different measurement conditions, and no significant difference between the RGM and control groups were observed. In conclusion, when RGM is used in chicken breast sausages, the WHC, antioxidant capacity, and viscoelastic properties are affected. RGM can possibly be utilized in high value-added processed meat products if its quantity and particle size are altered based on product characteristics.

Effect of Particle Size and Mixing Ratio on Quality of Fluidized Coated Vitamin C (입자크기와 혼합비에 따른 유동층 코팅 비타민 C의 품질 특성)

  • Park, Su-Jung;Hwang, Sung-Hee;Chung, Hun-Sik;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.364-368
    • /
    • 2007
  • The purpose of this study was to improve the stability and the processing property of vitamin C. Vitamin C was coated according to particle size(80-100 mesh, 100-140 mesh) and mixing ratio(1:1.6, 1:2.5, 1:3(w/w)) with coating solution(8% Zein-DP, 6% HPMC-FCC), and then the quality characteristics of fluidized bed micro coated vitamin C were investigated. The coating efficiency and the thickness of coating film were higher in $80{\sim}100$ mesh particle than in $100{\sim}140$ mesh particles, and coating efficiency was decreased as the coating material was increased. The distribution range of particle was more narrow in mixing ratio of 1:3(w/w) than in the other. DPPH radical scavenging activity was not affected by the particle size and the mixing ratio. There was no difference between the coating materials in terms of the quality characteristics. The optimum coating condition for fluidized bed micro-coating of vitamin C powder was selected as the particle size of $80{\sim}100$ mesh and the mixing ratio with coating solution of 1:3(w/w).

Three-dimensional Electrochemical Oxidation process using Nanosized Zero-valent Iron/Activated carbon as Particle electrode and Persulfate (나노영가철/활성탄 입자전극과 과황산을 이용한 3차원 전기화학적 산화공정)

  • Min, Dongjun;Kim, Cheolyong;Ahn, Jun-Young;Cho, Soobin;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.104-113
    • /
    • 2018
  • A three-dimensional electrochemical process using nanosized zero-valent iron (NZVI)/activated carbon (AC) particle electrode and persulfate (PS) was developed for oxidizing pollutants. X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller (BET) surface area analysis were performed to characterize particle electrode. XRD and SEM-EDS analysis confirmed that NZVI was impregnated on the surface of AC. Compared with the conventional two-dimensional electrochemical process, the three-dimensional particle electrode process achieved three times higher efficiency in phenol removal. The system with current density of $5mA/cm^2$ exhibited the highest phenol removal efficiency among the systems employing 1, 5, and $10mA/cm^2$. The removal efficiency of phenol increased as the Fe contents in the particle electrode increased. The particle electrode achieved more than 70% of phenol removal until it was reused for three times. The sulfate radical played a predominant role in phenol removal according to the radical scavenging test.

Functional Components of Barley Bran with Different Particle Sizes and Cultivars (품종 및 입도별 보리 맥강의 기능성분 함량)

  • Baek, So Yune;Lee, Yoon Jeong;Jang, Gwi Young;Kim, Min Young;Oh, Nam Seok;Lee, Mi Ja;Kim, Hyun Young;Lee, Jun Soo;Jeong, Heon Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1171-1177
    • /
    • 2017
  • This study evaluated the functional components of barley bran with different particle sizes and cultivars (Dahan, Hinchalssalbori, Heukgwang, Huknuri, and Boseokchal). Barley bran divided into fractions I (<60 mesh), II (60~100 mesh), and III (>100 mesh) was collected as pearling by-products produced by an industrial process consisting of consecutive barley pearlers. Total ${\beta}-glucan$ contents of all cultivars were especially highest in fraction II. Total arabinoxylan was the highest in barley bran from Boseokchal in fraction II. Total polyphenol contents were the highest in bran from Boseokchal and Hinchalssal in fraction II, and contents ranged of 5.61~7.00 and 4.24~6.58, respectively. Total flavonoid contents of all cultivars were especially highest in fraction II. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities ranged from 2.78~7.53 mg L-ascorbic acid (AA) eq/g and 2.24~4.83 mg AA eq/g, respectively. ABTS and DPPH radical scavenging activities were the highest in barley bran from Dahan in fraction II. In this study, fraction II showed enriched functional components and has the best particle size range for enriched antioxidant activities. These results provide useful data for selection of appropriate cultivars and particle size of bran to achieve high quality barley processing.

A Preliminary Study on a Method for the Morphological and Quantitative Analyses of Individual Snow Crystals and Its Application for Field Measurement

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.196-203
    • /
    • 2011
  • The main aim of this study is to establish methods of morphological preservation and elemental quantification for individual snow crystals. Individual snow crystals were collected at a height of 20 m above ground level. To stabilize and preserve the original morphologies of the snow crystals, cyanoacrylate, which has been used to fix liquid droplets, was applied (Kasahara et al., 2000). Several different kinds of snow crystals (dendrite, sectored plate, quasi-sectored plate, and hexagonal plate) were successively stabilized using this method. The stabilized snow crystals were pretreated with acetone, and then the elemental components contained in a whole snow crystal were quantified with the Particle Induced X-ray Emission (PIXE) analytical technique. The snow crystal residual composition determined in the present study was dominated by sulfur and mineral components, and the elemental mass showed an apparent crystal size dependence, where the elemental mass gradually decreased as the crystal size increased.

Antimicrobial Effect of Supercritical Robinia pseudo-acacia Leaf Extracts and Its Transdermal Delivery System with Cell Penetrating Peptide

  • Heo, Soo Hyeon;Park, Su In;Lee, Jinseo;Kim, Miok;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.226-235
    • /
    • 2020
  • In this paper, we present to evaluate physiological activity of Robinia pseudo-acacia leaf and its skin penetration using liposome and cell penetrating peptide. After extraction with Robinia pseudo-acacia leaf using the distilled water and supercritical, various physiological activities were examined. In antioxidants experiments, the total concentration of polyphenol compounds was determined to be 56.88 mg/g in hydrothermal extract, 45.07 mg/g in supercritical extract. The DPPH radical scavenging ability at 1,000 ㎍/mL was 33.97% in supercritical extract. The scavenging effect on SOD experiment at 500 ㎍/mL was 76.41% in supercritical extract. In the antimicrobial experiments, the hydrothermal extract had no effect, but supercritical extract represented maximum clear zone of 14.00 mm in Staphylococcus aureus strain. Liposome containing the RSE (Robinia pseudo-acacia leaf supercritical extract) reduced particle size and stabilized zeta potential. In the epidermal permeability experiment, it was confirmed that the permeation of liposome containing the RSE and cell penetrating peptides was remarkable.