• 제목/요약/키워드: Particle reinforced composite

검색결과 145건 처리시간 0.028초

The tensile deformation and fracture behavior of a magnesium alloy nanocomposite reinforced with nickel

  • Srivatsan, T.S.;Manigandan, K.;Godbole, C.;Paramsothy, M.;Gupta, M.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.169-182
    • /
    • 2012
  • In this paper the intrinsic influence of micron-sized nickel particle reinforcements on microstructure, micro-hardness tensile properties and tensile fracture behavior of nano-alumina particle reinforced magnesium alloy AZ31 composite is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced nanocomposite counterpart (AZ31/1.5 vol.% $Al_2O_3$/1.5 vol.% Ni] were manufactured by solidification processing followed by hot extrusion. The elastic modulus and yield strength of the nickel particle-reinforced magnesium alloy nano-composite was higher than both the unreinforced magnesium alloy and the unreinforced magnesium alloy nanocomposite (AZ31/1.5 vol.% $Al_2O_3$). The ultimate tensile strength of the nickel particle reinforced composite was noticeably lower than both the unreinforced nano-composite and the monolithic alloy (AZ31). The ductility, quantified by elongation-to-failure, of the reinforced nanocomposite was noticeably higher than both the unreinforced nano-composite and the monolithic alloy. Tensile fracture behavior of this novel material was essentially normal to the far-field stress axis and revealed microscopic features reminiscent of the occurrence of locally ductile failure mechanisms at the fine microscopic level.

ARB법에 의해 강소성가공된 Al/SiCp 입자분산복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Al/SiCp Particle Reinforced Composite Severely Deformed by ARB Process)

  • 이성희;김형욱
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.39-45
    • /
    • 2006
  • The $Al/SiC_p$ particle reinforced composite fabricated by a powder-in sheath rolling (PSR) method was severely. deformed by the accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubricant. The ARBed composite exhibited an ulbricant. grained structure similar to the other ARBed bulky materials. Tensile strength of the composite increased gradually with the number of ARB cycles, but from the 6th cycle it rather decreased slightly. These characteristics of the composite were somewhat different from those of Al powder compact fabricated by the same procedures. The difference in microstructure and mechanical properties between Al powder compact and the composite was discussed.

Wear Property of $Al_2O_3-Particle-Reinforced$ Aluminium Composite

  • Sahin, Y.;Motorcu, A.Riza
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.201-202
    • /
    • 2002
  • The abrasive wear behaviour of $Al_2O_3$ particle-reinforced aluminium composite was investigated. The wear rate of the composite and the matrix alloy has been expressed in terms of the applied load, sliding distance and particle size using linear factorial design approach.

  • PDF

분산형 복합재료의 손상 메커니즘 (Damage Mechanics in Particle or short-Fiber Reinforced Composite)

  • 조영태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.287-292
    • /
    • 1998
  • In particle or short-fiber reinforced composites. cracking of the reinforcements is a significant damage mode because the broken reinforcements lose load carrying capacity. This paper deals with the load carrying capacity of intact and broken ellipsoidal inhomogeneities embedded in an infinite body and a damage theory of particle or short-fiber reinforce composites. The average stress in the inhomogeneity represents its load carrying capacity. and the difference between the average stresses of the intact t and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori and Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

In-situ Crack Propagation Observation of a Particle Reinforced Polymer Composite Using the Double Cleavage Drilled Compression Specimens

  • Lee Yeon-Soo;Yoon Young-Ki;Jeong Bo-Young;Yoon Hi-Seak
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.310-318
    • /
    • 2006
  • In this study, we investigate the feasibility of in-situ crack propagation by using a double cleavage drilled compression (DCDC) specimen showing a slow crack velocity down to 0.03 mm/s under 0.01 mm/s of displacement control. Finite element analysis predicted that the DCDC specimens would show at least 4.3 fold delayed crack initiation time than conventional tensile fracture specimens under a constant loading speed. Using DCDC specimens, we were able to observe the in-situ crack propagation process in a particle reinforced transparent polymer composite. Our results confirmed that the DCDC specimen would be a good candidate for the in-situ observation of the behavior of particle reinforced composites with slow crack velocity, such as the self-healing process of micro-particle reinforced composites.

입자의 크기에 따른 흑연 보강 전도성 고분자 복합재료의 특성 연구 (Effect of particle size on graphite reinforced conductive polymer composites)

  • 허성일;윤진철;오경석;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.257-260
    • /
    • 2005
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. The ratio and particle size of graphite powder were varied to investigate electrical conductivity of cured composites. In this study, graphite reinforced conductive polymer composites with high filler loadings(>66wt.%) were manufactured to accomplish high electrical conductivity. With increasing the loading ratio of graphite powder, the electrical conductivity and flexural strength increased. However. above 80wt.% filler loadings, flexural strength decreased due to lack of resin. Regardless of graphite particle size, electrical conductivity wasn’t varied. On the other hand, with decreasing particle size, flexural strength increased due to high specific surface area.

  • PDF

분사주조에 의한 입자강화 금속기지 복합재료의 제조시 액적의 열적거동과 미세조직에 대한 고찰 (Microstructure and Thermal Behaviors of Droplets During the Formation of Particle Reinforced Metal Matrix Composites by Spray Casting Process)

  • 김명호;배차헌;정해용;박흥일
    • 한국주조공학회지
    • /
    • 제12권4호
    • /
    • pp.326-334
    • /
    • 1992
  • Particle-reinforced metal matrix composites via the Osprey spray casting process were fabricated by injecting second phase particles of $Al_2O_3$(<$40{\mu}m$) and W($6{\mu}m$) into the spray of Cu droplets, and the thermal behaviors of the composite droplets during flight were considered theoretically on the basis of mixing modes between the Cu droplets and the reinforced particulates injected. It was found that the W-injected spray is comprised of particle-embedded droplets, and the $Al_2O_3-injected$ spray comprises particle-attached droplets. From the predicted results of the thermal behaviors of the composite droplets and preforms produced, it is concluded that the thermal behaviors of the composite droplets during flight, and during the subsequent deposition are strongly influenced by its mixing modes between the reinforced particulates and Cu droplets during flight.

  • PDF

슬래그 입자의 크기 및 체적비에 따른 슬래그 입자강화 복합재료의 기계적 특성 연구 (Effect of Slag Particle Size and Volume Fraction on Mechanical Properties of Slag Reinforced Composite)

  • 남지훈;전흥재;홍익표
    • Composites Research
    • /
    • 제26권4호
    • /
    • pp.218-222
    • /
    • 2013
  • 본 연구에서는 제강 과정의 부산물로 발생하는 슬래그의 구조용 충전제로써의 사용 가능성을 검토하였다. 고분자 기지 슬래그 복합재료를 제작하여 슬래그 입자의 크기(8~12 ${\mu}m$ and 12~16 ${\mu}m$), 체적 비(0-30 vol.%)에 따른 슬래그 복합재료의 기계적 특성에 대한 실험적 연구를 수행하였다. 복합재료 물성에 영향을 주는 요인인 입자 분산 도와 계면상태를 고찰하기 위해 각각 시편에 대하여 조직사진을 촬영하였다. 인장 시험 결과 슬래그 복합재료의 재료강성은 슬래그 체적비가 증가할수록 증가하였고 인장 강도는 체적비가 증가할수록 감소하였다. 슬래그 복합재료의 재료강성은 슬래그 입자의 크기의 변화에 따른 뚜렷한 경향성을 띄지 않았고 인장강도는 입자의 크기가 작을수록 높은 값을 가졌다. 조직 사진 촬영 결과 슬래그 복합재료가 양호한 계면상태를 보였고, 낮은 체적 비에서는 좋은 분산 도를 나타냈지만 체적비가 높아지면 입자들의 뭉침 현상이 발생하는 것을 알 수 있었다.

분산형 복합재료의 강화재 손상 증분형 이론 (Incremental Theory of Reinforcement Damage in Discontinuously-Reinforced Composite)

  • 김홍건
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.122-126
    • /
    • 2000
  • In particle or short-fiber reinforced composites cracking of the reinforcements is a significant damage mode because the broken reinformcements lose load carrying capacity . The average stress in the inhomogeneity represents its load carrying capacity and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix, An incremental constitutive relation of particle or short-fiber reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. influence of the cracking damage on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

  • PDF

Incremental Damage Mechanics of Particle or Short-Fiber Reinforced Composites Including Cracking Damage

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.192-202
    • /
    • 2002
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with an incremental damage theory of particle or short-fiber reinforced composites. The composite undergoing damage process contains intact and broken reinforcements in a matrix. To describe the load carrying capacity of cracked reinforcement, the average stress of cracked ellipsoidal inhomogeneity in an infinite body as proposed in the previous paper is introduced. An incremental constitutive relation on particle or short-fiber reinforced composites including progressive cracking of the reinforcements is developed based on Eshelby's (1957) equivalent inclusion method and Mori and Tanaka\`s (1973) mean field concept. Influence of the cracking damage on the stress-strain response of composites is demonstrated.