• Title/Summary/Keyword: Particle reaction model

Search Result 131, Processing Time 0.028 seconds

Slug Characteristics in a Bubbling Fluidized Bed Reactor for Polymerization Reaction (기포유동층 고분자 중합 반응기에서의 슬러그 특성)

  • Go, Eun Sol;Kang, Seo Yeong;Seo, Su Been;Kim, Hyung Woo;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.651-657
    • /
    • 2020
  • Fluidization processes in which solid particles vividly move like gas or liquid have been widely used in various industrial sectors, such as thermochemical energy conversion and polymerization processes for general purpose polymer resins. One of the general purpose polymer resins, LLDPE(Linear low-density polyethylene) resins have been produced in bubbling fluidized bed processes in the world. In a bubbling fluidization polymerization reactors, LLDPE particles with relatively larger particle size and low density are fluidized by hydrogen gas for polymerization reaction. Though LLDPE polymerization reactors are one of bubbling fluidization processes, slugs that have negative impact for reaction exist or occur in these processes. Therefore, the fluidization state of LLDPE particles was investigated in a simulation model similar to a pilot-scale polymerization reactor (0.38 m l.D., 4.4 m High). In particular, the effect of gas velocity (0.45-1.2 m/s), solid density (900-199 kg/㎥), solid sphericity (0.5-1.0), and average particle size (120-1230 ㎛), on bed height and fluidization state were measured by using a CPFD(Computational particle-fluid dynamics) method. With CPFD analysis, the occurrence of a flat slug was visualized. Also, the change in particle properties, such as particle density, sphericity, and size, could reduce the occurrence of slug and bed expansion.

Kinetic study of high-temperature removal of $H_2S$ by Ca-based sorbents (황화수소 제거를 위한 칼슘계 고온탈황제의 황화반응속도에 관한 연구)

  • 김영식;전지환
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.04a
    • /
    • pp.144-153
    • /
    • 1998
  • Sorbents of calcined limestone and oyster particles having a diameter of about 0.63mm were exposed to simulate fuel gases containing 5000ppmv H2S for temperatures ranging from 600 to 800C in a TGA. The reaction between CaO and H2S proceds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. The kinetics of the sorption of H2S by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.

  • PDF

Kinetics of Thermal Dehydration of Ha-dong Kaolin (하동카오린의 열분해속도에 관한 연구)

  • 박희찬;손명모
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.1
    • /
    • pp.35-40
    • /
    • 1981
  • The kinetics of the dehydration of Ha-dong kaolin was studied isothermally at various temperatures. Dehydration rate was measured by thermogravimetry method in the temperature range of 440~50$0^{\circ}C$ and the particle size range of 170~325mesh. The general equation f($\alpha$)=kt, where $\alpha$ is the fraction reacted in the time and the function f($\alpha$) depends on the reaction mechanism, was applied to this reaction. The function, f($\alpha$) was obtained by application of reduced-time plot and plot of lnln (1-$\alpha$) vs. ln (time), and expressed as (1-$\alpha$) ln (1-$\alpha$)+$\alpha$=kt. The dehydration followed the diffusion-controlled reaction model and gave activation energy of 30Kcal/mole.

  • PDF

Kinetic of High-Temperature Removal of $H_2S$ by Ca-based Sorbents (황화수소 제거를 위한 칼슘계 고온 탈황제의 황화반응속도)

  • 김영식;전지환;손병현;정종현;정덕영;오광중
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.125-133
    • /
    • 1999
  • Sorbents of calcined limestone and oyster particles having a diameter of about 0.63mm were exposed to simulated fuel gases containing 5000ppm $H_2S$ for temperatures ranging from 600 to 80$0^{\circ}C$ in a TGA (Thermalgravimetric analyzer). The reaction between CaO and $H_2S$ proceeds via an unreacted shrinking core mechanism. The sulfidation rate is likely to be controlled primarily by countercurrent diffusion through the product layer of calcium sulfide(CaS) formed. The kinetics of the sorption of $H_2S$ by CaO is sensitive to the reaction temperature and particle size, and the reaction rate of oyster was faster than the calcined limestone.

  • PDF

Nano-particles of Mechanochemical Synthesis

  • Urakaev, Farit Kh.
    • Journal of the Speleological Society of Korea
    • /
    • no.71
    • /
    • pp.5-11
    • /
    • 2006
  • A theoretical investigation of the solid phase mechanochemical synthesis of nano sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3 mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano TlCl by dilution of initial (2NaCl+$Tl_2SO_4$) mixture with the exchange reaction product (diluent,$zNa_2SO_4$, z=z*=11.25) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano TlCl obtained experimentally were compared with those for the model reaction KBr+TlCl+zKCl=(z+1) KCl+TlBr (z=z1*=13.5), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

Theory of Nanoparticles Mechanosynthesis

  • Urakaev, Farit Kh.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.405-406
    • /
    • 2005
  • A theoretical investigation of the solid-phase mechanochemical synthesis of nano-sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3-mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact-friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano-TlCl by dilution of initial (2NaCl + $Tl_2SO_4$) mixture with the exchange reaction product (diluent, $zNa_2SO_4$, $z=z^*=11.25$) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano-TlCl obtained experimentally were compared with those for the model reaction KBr + TlCl + zKCl = (z + 1) KCl + TlBr ($z=z_l^*=13.5$), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

  • PDF

A Numerical Study on Evaporation and Combustion of Liquid Spray (액체분무의 증발 및 연소에 관한 수치적 연구)

  • 정인철;이상용;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2073-2082
    • /
    • 1991
  • The vaporization and combustion of liquid spray in a cylindrical shape combustor was studied numerically. Mixture of liquid drops and air was assumed to be ejected from the center-hole and assisting air from the concentric annulus with swirling. Eulerian-Lagrangian scheme was adopted for the two phase calculation, and the interactions between the phases were considered with the PSIC model. Also adopted were the infinite conductivity model for drop vaporization, the equation of Arrhenius and the eddy break-up model for reaction rate, and the k-epsilon model for turbulence calculations. Gas flow patterns, drop trajectories and contours of temperature and mass fractions of the gas species were predicted with swirl number, drop diameter, and equivalence ratio taken as parameters. Calculations show that the vaporization and the consequent combustion efficiency enhance with the increase of the swirl number and/or with the decrease of drop size, and the higher maximum temperature is attained with the higher equivalence ratio.

External and Internal Glucose Mass Transfers in Succinic Acid Fermentation with Stirred Bed of Immobilized Actinobacillus succinogenes under Substrate and Product Inhibitions

  • Galaction, Anca-Irina;Rotaru, Roxana;Kloetzer, Lenuta;Vlysidis, Anestis;Webb, Colin;Turnea, Marius;Cascaval, Dan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1257-1263
    • /
    • 2011
  • This paper is dedicated to the study on the external and internal mass transfers of glucose for succinic acid fermentation under substrate and product inhibitions using a bioreactor with stirred bed of immobilized Actinobacillus succinogenes cells. By means of the substrate mass balance for a single particle of biocatalysts, considering the kinetic model adapted for both inhibitory effects, specific mathematical models were developed for describing the profiles of the substrate concentration in the outer and inner regions of biocatalysts and for estimating the substrate mass flows in the liquid boundary layer surrounding the particle and inside the particle. The values of the mass flows were significantly influenced by the internal diffusion velocity and rate of the biochemical reaction of substrate consumption. These cumulated influences led to the appearance of a biological inactive region near the particle center, its magnitude varying from 0 to 5.3% of the overall volume of particles.

Kinetic and Effectiveness Factor for Methanol Steam Reforming over CuO-ZnO-Al2O3 Catalysts (CuO-ZnO-Al2O3 촉매에서의 메탄올 수증기 개질반응에 대한 반응속도와 유효성인자)

  • Lim, Mee-Sook;Suh, Soong-Hyuck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.214-223
    • /
    • 2002
  • Kinetic and effectiveness factors for methanol steam reforming using commercial copper-containing catalysts in a plug flow reactor were investigated over the temperature ranges of $180-250^{\circ}C$ at atmospheric pressure. The selectivity of $CO_2$/$H_2$ was almost 100%, and CO products were not observed under reaction conditions employed in this work. It was indicated that $CO_2$ was directly produced and CO was formed via the reverse water gas shift reaction after methanol steam reforming. The intrinsic kinetics for such reactions were well described by the Langmuir-Hinshelwood model based on the dual-site mechanism. The six parameters in this model, including the activation energy of 103kJ/mol, were estimated from diffusion-free data. The significant effect of internal diffusion was observed for temperature higher than $230^{\circ}C$ or particle sizes larger than 0.36mm. In the diflusion-limited case, this model combined with internal effectiveness factors was also found to be good agreement with experimental data.

Neutron Cross Section Evaluation on Dy Isotopes

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.154-164
    • /
    • 2002
  • Neutron cross section data on Dy-160, Dy-161, Dy-162, Dy-163 and Dy-164 were calculated and evaluated in the energy range of 1 keV to 20 MeV using a spherical optical model, statistical model and pre-equilibrium model. The energy dependent optical model potential parameters were obtained based on the recent experimental data. The width fluctuation correction in Hauser-Feshbach particle decay and the quantum mechanical approach in pre-equilibrium analysis were introduced and gave a better cross section calculation in EMPIRE-II. The total, elastic scattering and threshold reaction cross sections were evaluated and compared with the evaluated files. The model calculated (n, tot), (n, ${\gamma}$) and (n, p) cross sections were in good agreement with the experimental data in the measured energy range. The results will be applied to ENDF/B-VI for data improvement.