• Title/Summary/Keyword: Particle model

Search Result 2,266, Processing Time 0.034 seconds

Effect of Latex Particle Morphology on the Film Properties of Acrylic Coatings (II);Film Forming Behavior of Model Composite Latex (라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (II);모델 복합 라텍스 입자의 필름형성 거동)

  • Ju, In-Ho;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.132-139
    • /
    • 2004
  • Film forming behavior of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. The film forming behavior was evaluated using pseudo on-line measurements of the cumulative weight loss, the UV transmittance, and the tensile fracture energy. Each stages of film formation I, II were not sensitive to the morphology of model latexes, but stage-ill was largely dependent on the morphology of model latexes. The chain mobility of polymer which composed the shell component was found to dominantly determine the behavior of film forming stage-III.

Model of Particle Growth in Silane Plasma Reactor for Semiconductor Fabrication (반도체 제조용 사일렌 플라즈마 반응기에서의 입자 성장 모델)

  • 김동주;김교선
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.275-281
    • /
    • 2001
  • We used the discrete-sectional model to analyze the particle growth by coagulation of particles in silane plasma reactor, considering the Gaussian distribution function for particle charges. The effects of process conditions such as monomer size and mass generation rate of monomers on particle growth in plasma reactor were analyzed theoretically/ Based on the Gaussian distribution function of particle charges, the large particles of more than 40 nm in size are almost found to be charged negatively, but some fractions of small, tiny particles are in neutral state or even charged positively. As the particle size and surface area increase with time by particle coagulation, the number of charges per particle increases with time. As the large particles are generated by particle coagulation, the particle size distribution become bimodal. The results of discrete-sectional model for the particle growth in silane plasma reactor were in close agreement with the experimental results by Shiratani et al. [3] for the same plasma conditions. We believe the model equations for the particle charge distribution and coagulation between particles can be applied to understand the nano-sized particle growth in plasma reactor.

  • PDF

Feasibility study of improved particle swarm optimization in kriging metamodel based structural model updating

  • Qin, Shiqiang;Hu, Jia;Zhou, Yun-Lai;Zhang, Yazhou;Kang, Juntao
    • Structural Engineering and Mechanics
    • /
    • v.70 no.5
    • /
    • pp.513-524
    • /
    • 2019
  • This study proposed an improved particle swarm optimization (IPSO) method ensemble with kriging model for model updating. By introducing genetic algorithm (GA) and grouping strategy together with elite selection into standard particle optimization (PSO), the IPSO is obtained. Kriging metamodel serves for predicting the structural responses to avoid complex computation via finite element model. The combination of IPSO and kriging model shall provide more accurate searching results and obtain global optimal solution for model updating compared with the PSO, Simulate Annealing PSO (SimuAPSO), BreedPSO and PSOGA. A plane truss structure and ASCE Benchmark frame structure are adopted to verify the proposed approach. The results indicated that the hybrid of kriging model and IPSO could serve for model updating effectively and efficiently. The updating results further illustrated that IPSO can provide superior convergent solutions compared with PSO, SimuAPSO, BreedPSO and PSOGA.

Motion behavior research of liquid micro-particles filtration at various locations in a rotational flow field

  • Yan, Yan;Lin, Yuanzai;Cheng, Jie;Ni, Zhonghua
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • This study presents a particle-wall filtration model for predicting the particle motion behavior in a typical rotational flow field-filtration in blower system of cooker hood. Based on computational fluid dynamics model, air flow and particles has been simulated by Lagrangian-particle/ Eulerian-gas approaches and get verified by experiment data from a manufacturer. Airflow volume, particle diameter and local structure, which are related to the particle filtration has been studied. Results indicates that: (1) there exists an optimal airflow volume of $1243m^3/h$ related to the most appropriate filtration rate; (2) Diameter of particle is the significant property related to the filtration rate. Big size particles can represent the filtration performance of blower; (3) More than 86% grease particles are caught by impeller blades firstly, and then splashed onto the corresponding location of worm box internal wall. These results would help to study the micro-particle motion behavior and evaluate the filtration rate and structure design of blower.

A Study on Numerical Modeling of Turbulent Gas-Particle Flows in a rectangular chamber Using Eulerian-Eulerian Method (오일러리언 접근법을 이용한 기류제트에 의한 가스-입자 2상 난류 유동특성 모델링 연구)

  • Kim, Tae-Kuk;Min, Dong-Ho;Yoon, Kyung-Beom;Chang, Hee-Chul
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.202-208
    • /
    • 2006
  • The purpose of this research is to model numerically the turbulent gas-particle flows in a rectangular chamber using Eulerian-Eulerian Method. A computer code using the ${\kappa}-{\varepsilon}-Ap$ two-phase turbulence model is developed for the numerical study. This code and the Eulerian multiphase model in FLUENT were used for the numerical simulations of the two-phase flow in a rectangular chamber. The numerical results calculated by the two different turbulent gas-particle codes have shown that the ${\kappa}-{\varepsilon}-Ap$ model results in a stronger diffusion of the flow momentum in the gas-particle turbulence interaction than the Eulerian multiphase model in FLUENT.

  • PDF

Verification and application of beam-particle model for simulating progressive failure in particulate composites

  • Xing, Jibo;Yu, Liangqun;Jiang, Jianjing
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-283
    • /
    • 1999
  • Two physical experiments are performed to verify the effectiveness of beam-particle model for simulating the progressive failure of particulate composites such as sandstone and concrete. In the numerical model, the material is schematized at the meso-level as an assembly of discrete, interacting particles which are linked through a network of brittle breaking beams. The uniaxial compressive tests of cubic and parallelepipedal specimens made of carbon steel rod assembly which are glued together by a mixture are represented. The crack patterns and load-displacement response observed in the experiments are in good agreement with the numerical results. In the application respect of beam-particle model to the particulate composites, the influence of defects, particle arrangement and boundary conditions on crack propagation is approached, and the correlation existing between the cracking evolution and the level of loads imposed on the specimen is characterized by fractal dimensions.

Effect of Latex Particle Morphology on the Film Formation and Film Properties of Acrylic Coatings (III);Film Properties of Model Composite Latex (라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (III);모델 복합라텍스 입자의 필름물성)

  • Ju, In-Ho;Byeon, Ja-Hun;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • Film properties of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. Tensile strength and tensile elongation at break of final films were evaluated. Those properties can be interpreted in terms of PBA/PMMA phase ratio and their morphology. The interfacial adhesion strength was also evaluated using $180^{\circ}$ peel strength measurement and cross hatch cutting test.

A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows (고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근)

  • Kim, Se-Yun;Lee, Chung-Gu;Lee, Kye-Bock
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2037-2042
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows. Available experimental data were surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and particle Reynolds number were examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden flow in various conditions both qualitatively and quantitatively.

  • PDF

A Theoretical Approach on the Turbulence Intensity of the Carrier Fluid in Two-phase Particle-laden Flows (고체입자가 부상된 이상유동에서 운반유체의 난류강도에 대한 해석적 접근)

  • Kim, Se-Yun;Lee, Chung-Gu;Lee, Kye-Bock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.813-820
    • /
    • 2003
  • The purpose of this research is to develop the model of turbulence modulation due to the presence of particles in various types of particle-laden flows Available experimental data are surveyed and the dependence of turbulence modulation of carrier-phase on particle size, concentration and. particle Reynolds number are examined. This study takes into account the effect of wake produced by particle, the drag between phases and the velocity gradient in the wake to estimate the production of turbulence. The model of turbulence modulation using the mixing length theory under the assumption of equilibrium flow is proposed. Numerical results show that the model is successful in predicting the characteristics of the particle-laden in various flow conditions both qualitatively and quantitatively.

A New Lagrangian Stochastic Model for Prediction of Particle Dispersion in Turbulent Boundary Layer Flow (경계층 유동에서 입자확산의 예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1851-1856
    • /
    • 2003
  • A new Lagrangian stochastic dispersion model is developed by combining the GLM(generalized Langevin model) and the elliptic relaxation method. Under the physically plausible assumptions a simple analytical solution of elliptic relaxation is obtained. To compare the performance of our model with other model, the statistics of particle velocity as well as concentration are investigated. Numerical simulation results show good agreement with available experimental data.

  • PDF