• 제목/요약/키워드: Particle model

검색결과 2,274건 처리시간 0.026초

부유 물질 거동 분석을 위한 실규모 실험 및 입자 분산 모형 적용 (Real Scale Experiment for Suspended Solid Transport Analysis and Modeling of Particle Dispersion Model)

  • 신재현;박인환;성호제;이동섭
    • 융합정보논문지
    • /
    • 제10권12호
    • /
    • pp.236-244
    • /
    • 2020
  • 본 연구에서는 하천실험센터에서 부유 물질 실험을 수행하여 부유 물질의 거동 및 확산을 관찰하고 이를 입자분산모형을 통하여 그 이동을 구현하고자 하였다. 규사를 물과 믹서기를 이용하여 혼합한 후 실규모 크기의 실험수로에 인위적으로 투입하고 레이저부유사측정기(LISST)를 이용하여 부유 물질의 농도를 측정하였다. 실험에서 드론 이미지 및 부유사 측정기 관측 데이터와 입자 분산 모형을 통해 부유 물질의 거동을 모의하여 비교한 결과, 비교적 실험 결과가 구현이 잘 된 것을 확인할 수 있었다. 이를 통하여 입자 분산 모형의 적용성은 물론, 높은 강우량으로 인한 유량 발생 시 부유 물질 예측 활용성을 기대할 수 있게 되었다.

비평형 2.5 난류모델을 이용한 라그란지안 입자 확산모델 개발 (Development of Lagrangian Particle Dispersion Model Based on a Non-equilibrium 2.5 Level Closure Turbulence Model)

  • 구윤서
    • 한국대기환경학회지
    • /
    • 제15권5호
    • /
    • pp.613-623
    • /
    • 1999
  • A Lagrangian particle dispersion mode l(LPDM) coupled with the prognostic flow model based on nonequilibrium level 2.5 turbulence closure has been dcveloped to simulate the dispersion from an elevated emission source. The proposed model did not require any empirical formula or data for the turbulent statistics such as velocity variances and Lagrangian time scales since the turbulence properties for LPDM were calculated from results of the flow model. The LPDM was validated by comparing the model results against the wind tunnel tracer experiment and ISCST3 model. The calculated wind profile and turbulent velocity variances were in good agreement with those measured in the wind tunnel. The ground level concentrations along the plume centerline as well as the dispersion codfficients also showed good agreement in comparison with the wind tunnel tracer experiment. There were some discrepancies on the horizontal spread of the plume in comparison with the ISCST3 but the maximum ground level concentrations were in a good confidence range. The results of comparisons suggested that the proposed LPDM with the flow model was an effective tool to simulate the dispersion in the flow situation where the turbulent characteristics were not available in advance.

  • PDF

A Method of Tracking Object using Particle Filter and Adaptive Observation Model

  • Kim, Hyoyeon;Kim, Kisang;Choi, Hyung-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.1-7
    • /
    • 2017
  • In this paper, we propose an efficient method that is tracking an object in real time using particle filter and adaptive observation model. When tracking object, it happens object shape variation by camera or object movement in variety environments. The traditional method has an error of tracking from these variation, because it has fixed observation model about the selected object by the user in the initial frame. In order to overcome these problems, we propose a method that updates the observation model by calculating the similarity between the used observation model and the eight-way of edge model from the current position. If the similarity is higher than the threshold value, tracking the object using updated observation model to reset observation model. On the contrary to this, the algorithm which consists of a process is to maintain the used observation model. Finally, this paper demonstrates the performance of the stable tracking through comparison with the traditional method by using a number of experimental data.

상용 CFD 코드에서 사용되는 촤 반응속도 모델에 대한 이해 (Understanding the Use of Coal Char Kinetic Models in commercial CFD Codes)

  • 김대희;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.91-94
    • /
    • 2013
  • Commercial computational fluid dynamics (CFD) codes traditionally rely on the computational efficiency of the simplified single-film apparent char kinetic model to predict char particle temperatures and char conversion rates in pulverized coal boilers. The aim of this study is to evaluate the reliability of the single-film apparent kinetic model and to suggest the importance of proper use of this model. For this, a parametric study was conducted with a consideration of main parameters such as Stefan flow, product species, particle evolution, and kinetic parameters.

  • PDF

Selecting the Best Soil Particle-Size Distribution Model for Korean Soils

  • 황상일
    • 환경정책연구
    • /
    • 제2권1호
    • /
    • pp.77-86
    • /
    • 2003
  • 입도분포는 토양의 수리특성을 추정하는 데 많이 사용되고 있다. 본 연구는 다양한 가정조건을 가진 9개의 입도분포모형을 가지고 한국토양을 대상으로 어떤 모형이 가장 잘 입도분포를 모사하는지를 조사하였다. 4개의 추정변수를 가진 Fredlund모형, 로지스틱성장곡선, 그리고 Weibull분포가 다른 모형에 비해 PSD를 잘 모사하였다. 특히 추정변수가 없는 로지스틱 성장곡선 함수가 좋은 모사를 나타낸 것이 흥미로웠다.

  • PDF

SPH를 이용한 봉충돌 해석에서 구성방정식의 특성 (Characteristics of Constitutive Equations under Rod Impact Analysis by Smoothed Particle Hydrodynamics)

  • 김용환;김용석;이정민
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.62-73
    • /
    • 2003
  • The characteristics of constitutive equations, for hydrocodes, were Investigated by the comparison between the smoothed particle hydrodynamcis simulation and the experiment of rod impact test which resulted in a deformation history of impacting front where high strain and high strain rate dominate. The constitutive equations used in the simulation Is J-C(Johnson-Cook) model, Z-A(Zerilli-Armstrong) model, and S-C-G(Steinberg-Cochran-Guinan) model. The modification of Z-A model, based on the increased effect of strain-rate hardening, showed better correlation with expriment.

Lattice discrete particle modeling of compressive failure in hollow concrete blocks

  • Javidan, Fatemeh;Shahbeyk, Sharif;Safarnejad, Mohammad
    • Computers and Concrete
    • /
    • 제13권4호
    • /
    • pp.437-456
    • /
    • 2014
  • This work incorporates newly introduced Lattice Discrete Particle Model (LDPM) to assess the failure mechanism and strength of hollow concrete blocks. Alongside, a method for the graphical representation of cracked surfaces in the LDPM is outlined. A slightly modified calibration procedure is also suggested and used to estimate required model parameters for a tested concrete sample. Next, the model is verified for a compressively loaded hollow block made of the very same concrete. Finally, four geometries commonly used in the production of hollow concrete blocks are selected, numerically simulated, and their failure properties are explored under concentric and eccentric compressions.

A systematic approach to the calibration of micro-parameters for the flat-jointed bonded particle model

  • Zhou, Changtai;Xu, Chaoshui;Karakus, Murat;Shen, Jiayi
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.471-482
    • /
    • 2018
  • A flat-jointed bonded-particle model (BPM) has been proved to be an effective tool for simulating mechanical behaviours of intact rocks. However, the tedious and time-consuming calibration procedure imposes restrictions on its widespread application. In this study, a systematic approach is proposed for simplifying the calibration procedure. The initial relationships between the microscopic, constitutive parameters and macro-mechanical rock properties are firstly determined through dimensionless analysis. Then, sensitivity analyses and regression analyses are conducted to quantify the relationships, using results from numerical simulations. Finally, four examples are used to demonstrate the effectiveness and robustness of the proposed systematic approach for the calibration procedure of BPMs.

Remaining useful life prediction for PMSM under radial load using particle filter

  • Lee, Younghun;Kim, Inhwan;Choi, Sikgyoung;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • 제29권6호
    • /
    • pp.799-805
    • /
    • 2022
  • Permanent magnet synchronous motors (PMSMs) are widely used in systems requiring high control precision, efficiency, and reliability. Predicting the remaining useful life (RUL) with health monitoring of PMSMs prevents catastrophic failure and ensures reliable operation of system. In this study, a model-based method for predicting the RUL of PMSMs using phase current and vibration signals is proposed. The proposed method includes feature selection and RUL prediction based on a particle filter with a degradation model. The Paris-Erdogan model describing micro fatigue crack propagation is used as the degradation model. An experimental set-up to conduct accelerated life test, capable of monitoring various signals was designed in this study. Phase current and vibration data obtained from an accelerated life test of the PMSMs were used to verify the proposed approach. Features extracted from the data were clustered based on monotonicity and correlation clustering, respectively. The results identify the effectiveness of using the current data in predicting the RUL of PMSMs.

가스분석을 이용한 석탄 입자크기가 촤-$CO_{2}$ 가스화 반응성에 미치는 영향 연구 (The Effect of Coal Particle Size on Char-$CO_{2}$ Gasification Reactivity by Gas Analysis)

  • 김용택;서동균;황정호
    • Korean Chemical Engineering Research
    • /
    • 제49권3호
    • /
    • pp.372-380
    • /
    • 2011
  • 촤-가스화 반응은 반응온도, 반응가스 부분압력, 시스템 총 압력, 입자크기 등 운전조건뿐만 아니라 촤의 화학적 조성 및 물리적 구조의 영향을 받는다. 본 연구에서는 두 종류의 역청탄 촤를 이용하여 반응온도 1,000-$1,400{^{\circ}C}$에서 $CO_{2}$ 가스화시 입자크기의 영향을 관찰하였다. 실험실 규모의 고정식 반응기를 이용하여 대기압 하에서 실험을 수행하였으며 반응가스인 $CO_{2}$(40 vol%)가 반응기에 공급되면 촤와 반응하여 CO를 생성하였다. 촤의 탄소 전환율을 측정하기 위하여 비분산적외선 방식의 CO/$CO_{2}$ 센서가 장착된 실시간 가스분석기를 이용하였다. 실험결과 동일한 온도에서 입자크기가 감소할수록 가스화 반응성은 증가하였으며 온도가 증가할수록 반응성에 미치는 입자크기의 영향은 더욱더 크게 증가하였다. 또한 반응성이 낮은 촤에서 입자크기의 영향은 다소 적게 나타났다. 입자크기와 석탄 종류는 반응모델에도 영향을 주었다. Shrinking core model은 반응성이 낮은 석탄을 잘 묘사했으며 반대로 Volume reaction model은 반응성이 높은 석탄을 잘 묘사하였다.