• Title/Summary/Keyword: Particle method CFD

Search Result 89, Processing Time 0.02 seconds

A Study on CFD Methodology of the Performance Predictionfor the UV Disinfection Reactor (자외선 소독기 성능 예측을 위한 CFD 해석 기법 연구)

  • Kim, Hyunsoo;Bak, Jeonggyu;Lee, Kunghyuk;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.44-51
    • /
    • 2014
  • The disinfection method using UV has emerged as photodissociation in water disinfection. In order to predict performance for UV disinfection, CFD analysis was performed due to saving cost. Most CFD studies of UV reactor have used particle tracking method. However it demands additional analysis time, computing resource and phase besides working fluid. In this paper, pathogenic microorganisms' route is assumed to streamline of fluid to save computing time. the computational results are in good agreement with experimental results. The results of streamline method are compared with the particle tracking method. In conclusion, the effectiveness of streamline method for UV disinfection are confirmed.

Simulation of Solid Particle Sedimentation by Using Moving Particle Semi-implicit Method (고체 입자형 MPS법을 이용한 토사물 퇴적 시뮬레이션)

  • Kim, Kyung Sung;Yu, Sunjin;Ahn, Il-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.119-125
    • /
    • 2018
  • The particle based computational fluid dynamics (CFD) method, which follow Lagrangian approach for fluid dynamics, fluid particle behavior by tracking all particle calculation physical quantities of each particle. According to basic concept of particle based CFD method, it is difficult to satisfy continuum theory and measure influences from neighboring particle. Article number density and weight function were used to solve aforementioned issue. Difficulties continuum mean simulate non-continuum particles such as solid including granular and sand. In this regard, the particle based CFD method modified solid particle problems by replacing viscous and surface tension forces friction and drag forces. In this paper, particle interaction model for solid particle friction model implemented to simulate solid particle problems. The broken dam problem, which is common to verify particle based CFD method, used fluid or solid particles. The angle of repose was observed in the simulation results the solid particle not fluid particle.

Efficiency Prediction of the Particle Removal Efficiency of Multi Inner Stage(MIS) Cyclone by Computational Fluid Dynamics(CFD) Analysis and Experimental Verification (CFD 해석을 이용한 Multi Inner Stage Cyclone 내부의 미세입자제거 효율 예측 및 실험적 검증)

  • Kim, Hye-Min;Kwon, Sung-An;Lee, Sang-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.243-246
    • /
    • 2012
  • A new multi inner stage(MIS) cyclone was designed to remove the acidic gas and minute particles of harmful materials produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of computational fluid dynamics(CFD) commercial program. Also, the flow locus of particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was -1,000 Pa, the efficiency was the best in this study. Based on the CFD simulation result, the pressure loss and destruction removal efficiency was measured through MIS cyclone experiment.

  • PDF

Analysis of Airflow Pattern and Particle Dispersion in Enclosed Environment Using Traditional CFD and Lattice Boltzmann Methods

  • Inoguchi, Tomo;Ito, Kazuhide
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.87-97
    • /
    • 2012
  • The indoor environments in high-rise buildings are generally well enclosed by defined boundary conditions. Here, a numerical simulation method based on the Lattice Boltzmann method (LBM), which aims to model and simulate the turbulent flow accurately in an enclosed environment, and its comparison with traditional computational fluid dynamics (CFD) results, are presented in this paper. CFD has become a powerful tool for predicting and evaluating enclosed airflows with the rapid advance in computer capacity and speed, and various types of CFD turbulence modeling and its application and validation have been reported. The LBM is a relatively new method; it involves solving of the discrete Boltzmann equation to simulate the fluid flow with a collision model instead of solving Navier-Stokes equations. In this study, the LBM-based scheme of flow pattern and particle dispersion analyses are validated using the benchmark test case of two- and three-dimensional and isothermal conditions (IEA/Annex 20 case); the prediction accuracy and advantages are also discussed by comparison with the results of CFD.

Generation of Synthetic Particle Images for Particle Image Velocimetry using Physics-Informed Neural Network (물리 기반 인공신경망을 이용한 PIV용 합성 입자이미지 생성)

  • Hyeon Jo Choi;Myeong Hyeon, Shin;Jong Ho, Park;Jinsoo Park
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Acquiring experimental data for PIV verification or machine learning training data is resource-demanding, leading to an increasing interest in synthetic particle images as simulation data. Conventional synthetic particle image generation algorithms do not follow physical laws, and the use of CFD is time-consuming and requires computing resources. In this study, we propose a new method for synthetic particle image generation, based on a Physics-Informed Neural Networks(PINN). The PINN is utilized to infer the flow fields, enabling the generation of synthetic particle images that follow physical laws with reduced computation time and have no constraints on spatial resolution compared to CFD. The proposed method is expected to contribute to the verification of PIV algorithms.

Estimation of Settling Efficiency in Sedimentation Basin Using Particle Tracking Method (입자추적기법을 이용한 침전지의 효율 평가)

  • Lee, Kil-Seong;Kim, Sang-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.293-304
    • /
    • 2004
  • Sedimentation basin plays an important role in urban water treatment, and there are many complicated phenomena which need to be understood for efficient design and control of it. Especially, the study on the improvement of settling efficiency is required. In this study, commercial CFD (Computational Fluid Dynamics) program, FLUENT, and particle tracking method were used to simulate the flow in sedimentation basin, and to predict the settling efficiency. Computational domain of real scale was made, and detail factors such as porous wall, and outlet trough were considered instead of being simplified. The simulation results were compared with the experimental data to calibrate the parameters of particle tracking method. Sensitivity analysis showed that the particle diameter had more significant effects on settling efficiency than the particle density. The computation results gave the best agreements with the experimental data, when the value of particle diameter was 26.5 ${\mu}{\textrm}{m}$.

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

CFD-DEM modeling of snowdrifts on stepped flat roofs

  • Zhao, Lei;Yu, Zhixiang;Zhu, Fu;Qi, Xin;Zhao, Shichun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.523-542
    • /
    • 2016
  • Snowdrift formation on roofs should be considered in snowy and windy areas to ensure the safety of buildings. Presently, the prediction of snowdrifts on roofs relies heavily on field measurements, wind tunnel tests and numerical simulations. In this paper, a new snowdrift modeling method by using CFD (Computational Fluid Dynamics) coupled with DEM (Discrete Element Method) is presented, including material parameters and particle size, collision parameters, particle numbers and input modes, boundary conditions of CFD, simulation time and inlet velocity, and coupling calculation process. Not only is the two-way coupling between wind and snow particles which includes the transient changes in snow surface topography, but also the cohesion and collision between snow particles are taken into account. The numerical method is applied to simulate the snowdrift on a typical stepped flat roof. The feasibility of using coupled CFD with DEM to study snowdrift is verified by comparing the simulation results with field measurement results on the snow depth distribution of the lower roof.

Analysis on the Flow and the Byproduct Particle Trajectory of Roots Type Vacuum Pump (루츠식 진공 펌프의 유동 및 부산물 입자 궤적에 대한 해석)

  • Lee, Chan;Kil, Hyun-Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • A CFD analysis method is developed and applied for investigating the gas flow and the byproduct particle trajectory in Roots type vacuum pump. The internal fluid flow and thermal fields between the rotors and the housing of vacuum pump are analyzed by using the dynamic mesh, the numerical methods for unsteady 2-D Navier-Stokes equation and the standard k-$\varepsilon$ turbulence model of the Fluent code. Coupled with the flow simulation results, the particle trajectory of the byproduct flowing into the pump with gas stream is analyzed by using discrete phase modeling technique. The CFD analysis results show the pressure, the velocity and the temperature distributions in pump change abruptly due to the rotation of rotors, and back flows are produced due to the strong reverse pressure gradients at rotor/rotor and rotor/housing clearances. The predicted byproduct particle trajectory results also show the particles impinge on the clearance surfaces between the housing and the rotor of pump and then may form the deposit layer causing the failure of pump.

Numerical Study of Aggregation and Breakage of Particles in Taylor Reactor (테일러 반응기 내의 입자응집과 분해에 관한 수치 연구)

  • Lee, Seung Hun;Jeon, Dong Hyup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.365-372
    • /
    • 2016
  • Using the computational fluid dynamics (CFD) technique, we simulated the fluid flow in a Taylor reactor considering the aggregation and breakage of particles. We calculated the population balance equation (PBE) to determine the particle-size distribution by implementing the quadrature method-of-moment (QMOM). It was used that six moments for an initial moments, the sum of Brownian kernel and turbulent kernel for aggregation kernel, and power-law kernel for breakage kernel. We predicted the final mean particle size when the particle had various initial volume fraction values. The result showed that the mean particle size and initial growth rate increased as the initial volume fraction of the particle increased.