• Title/Summary/Keyword: Particle measurement

Search Result 1,197, Processing Time 0.025 seconds

Study of Incipient Soot Particles with Measuring Methodologies (입자 측정방법을 통한 초기 수트입자 연구)

  • Lee Eui Ju
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • The physical characteristics of soot near the soot inception point were investigated with various measurements. In-situ measurements of particle size and volume fraction were introduced based on time resolved laser-induced incandescence (TIRE-LII) and laser-induced ion mobility (LIIM). The one has more convenience and accuracy than conventional LII technique and the other works best for particle sizes of a few nanometers at high concentrations in a uniform concentration field. A complementary ex-situ measurement of particle size is nano differential mobility analyzer (Nano-DMA), which recently developed for measuring particle sizes between 2nm and 100nm and provides high-resolution size information for early soot. Particles will be also collected on transmission electron microscope (TEM) grids using rapid thermophoretic sampling and analyzed for morphology. These measurements will allow fresh and original insight into the characterizing soot inception process. The measured physical properties of incipient soot will clarify the controlling growth mechanism combined with chemical ones, and the dominant mechanism for soot modeling can be deduced from the information.

  • PDF

Analysis PD Pattern in PET film with semiconductor particle (반도전 입자를 갖는 PET film내에서의 PD Pattern 분석)

  • Choi, Pil-Moon;Jeong, Byung-Sun;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2399-2401
    • /
    • 1999
  • This paper indicate that phase resolved partial discharge pattern are investigated on PET films with semiconductor particle. In this study, we measured phase-resolved PD pattern and statistical parameter from PET specimens according to containing semiconductor particle. Measurement system is the conventional PD detector using digital signal processing technique. The relationship of semiconductor particle in PET film was discussed through the difference of $\psi$-q-n distribution and statistical analysis.

  • PDF

Measurement of Particle Deposition Velocity Toward a Vertical Wafer Surface (수직 웨이퍼상의 입자 침착속도의 측정)

  • Bae, G.N.;Lee, C.S.;Park, S.O.;Ahn, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.521-527
    • /
    • 1995
  • The average particle deposition velocity toward a vertical wafer surface in a vertical airflow chamber was measured by a wafer surface scanner(PMS Model SAS-3600). Polystyrene latex(PSL) spheres with diameters between 0.3 and $0.8{\mu}m$ were used. To examine the effect of the airflow velocity on the deposition velocity, experiments were conducted for three vertical airflow velocities ; 20, 30, 50cm/s. Experimental data of particle deposition velocity were compared with those given by prediction model suggested by Liu and Ahn(1987).

  • PDF

Dilution methods for combustion aerosol measurement from stationary emission sources: A review (고정 오염원의 연소과정에서 발생하는 먼지를 측정하기 위한 희석방법 연구동향)

  • Woo, Chang Gyu;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo;Kang, Su Ji;Chun, Sung-Nam
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.165-172
    • /
    • 2017
  • For precise particle measurements in combustion environments, various dilution sampling methods were compared. Dilution equipments using dilution tunnels and hot/cold dilution with porous tube dilutors were most frequently used so far. The combination of porous tube dilutor and ejector diluter has relatively small footprint, and it results in lower particle losses compared to other methods. To determine the portion of condensable particulate matter, proper temperature control and flow control is required.

Assessment of speckle image through particle size and image sharpness

  • Qian, Boxing;Liang, Jin;Gong, Chunyuan
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.659-668
    • /
    • 2019
  • In digital image correlation, speckle image is closely related to the measurement accuracy. A practical global evaluation criterion for speckle image is presented. Firstly, based on the essential factors of the texture image, both the average particle size and image sharpness are used for the assessment of speckle image. The former is calculated by a simplified auto-covariance function and Gaussian fitting, and the latter by focusing function. Secondly, the computation of the average particle size and image sharpness is verified by numerical simulation. The influence of these two evaluation parameters on mean deviation and standard deviation is discussed. Then, a physical model from speckle projection to image acquisition is established. The two evaluation parameters can be mapped to the physical devices, which demonstrate that the proposed evaluation method is reasonable. Finally, the engineering application of the evaluation method is pointed out.

Measurement of the Slurry Flow-Field during Chemical Mechanical Polishing (Particle Image Velocimetry 기법을 이용하여, Chemical Mechanical Polishing 공정시 Slurry 유동장 측정)

  • Shin, Sang-Hee;Kim, Mun-Ki;Koh, Young-Ho;Kim, Ho-Young;Lee, Jae-Dong;Hong, Chang-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.125-128
    • /
    • 2004
  • Chemical Mechanical Polishing(CMP) in semiconductor production is characterized its output property by Removal Rate(RR) and Non-Uniformity(NU). Some Previous works shows that RR is determined by production of pressure and velocity and NC is also largely affected by velocity of flow-field during CMP. This study is about the direct measurement of velocity of slurry during CMP and reconstruction whole flow-field by Particle Image Velocimetry(PIV) Techniques. Typical PIV system is tuned adequately for inspecting CMP and Slurry Flow-field is measured by changing both Pad RPM and Carrier RPM. The results show that velocity is majorly determined not by Carrier RPM, but by Pad RPM.

  • PDF

The Calibration Method of Time Resolved Laser Induced Incandescence Using Carbon Black Particles for the Soot Measurement at Exhaust Tail Pipe in Engine (엔진 배기단 적용을 위한 Time Resolved Laser Induced Icandescence (TIRE-LII) 신호의 보정 : 카본 입자 이용)

  • Oh Kwang Chul;Kim Deok Jin;Lee Chun Hwan;Lee Chun Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1335-1343
    • /
    • 2005
  • The calibration technique of Time Resolved Laser Induced Incandescence was investigated both experimentally and numerically by using standard-sized carbon black particles for the instantaneous soot measurement at exhaust tail pipe in engine. The carbon black particles (19nm, 25nm, 45nm and 58nm) used in this study are similar, though not identical, to soot particle generated from flame not only in morphology but also in micro-structure. The amount of soot loading in flow was controled by a diluted gas (nitrogen) and was measured by the gravimetric method at exhaust pipe in calibrator. The successful calibrations of primary particle size and soot mass fraction were carried out at the range from 19nm to 58nm and from $0.25mg/m^3$ to $37mg/m^3$ respectively. And based on these results the numerical simulation of LII signal was tuned and the effect of an exhaust temperature variation on the decay rate of LII signal was corrected.

Exposure to Fine Particle along Different Commuting Routes in Urban Area of Fukuoka, Japan

  • Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.205-213
    • /
    • 2015
  • The objective of the current study was to assess the comparative risk associated with exposure to particulate matter (PM) while commuting via different public transport modes in Fukuoka, Japan. For the given routes and measuring days, a trip-maker carried a lightweight portable bag loaded the real-time measurement devices which take simultaneous measurement for size-fractioned particle number concentration, $PM_{2.5}$ mass concentration, and total suspended particle (TSP) collection. The results of the present study have shown significant differences between public transports as commuting modes in Fukuoka. The PM exposure levels on subway platform and inside subway train were overwhelmingly higher than those of other points on commuting route. The relative ratio between modes (i.e., the ratio of $PM_{2.5}$ inside subway to that inside bus) provides an idea for choosing a right commuting mode for our health. This study clearly provided evidence of the extremely high levels of iron exposure by subway uses compared to bus uses. The result of theoretically reconstructed mass concentration of $PM_{2.0-0.3}$ collected on subway platform suggests that the PM of underground subway will be associated with PM both generated in subway system and inleakaged from outdoor environment.

Spatial Distributions of On-road Ultrafine Particle Number Concentration on Naebu Express Way in Seoul during Winter Season (겨울철 서울 내부순환로 도로상 초미세입자 오염의 공간분포 특징)

  • Woo, Daekwang;Lee, Seung-Bok;Lee, Seung Jae;Kim, Jin Young;Jin, Hyun Chul;Kim, Taesung;Bae, Gwi-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.10-26
    • /
    • 2013
  • To understand the traffic emissions with high temporal and spatial resolutions on road, a mobile laboratory was developed. The objective of this study is to characterize on-road air pollution on Naebu express way surrounding the northern area of Seoul, Korea. We measured the number concentration of ultrafine particles larger than 5 nm and particle size distribution using a condensation particle counter and a fast mobility particle sizer, respectively on 3, 7, and 8 December 2009. The average ultrafine particle number concentration on the Naebu express way excluding tunnels was 126,000 particles/$cm^3$ and 4.2 times higher than that on internal road at Korea Institute of Science and Technology in Seoul, and more than twice higher than that measured on and at the arterial roads of Seoul in previous studies. The maximum ultrafine particle number concentration was observed at the tunnel sections. It was 232,000 particles/$cm^3$ and 1.8 times higher than average ultrafine particle number concentration for the other sections on Naebu express way. The ultrafine particle number concentration on the wider roads with higher traffic volume along the Han River was similar to that in the residential section, probably because of enhanced dilution effect in widely open environment. The size distribution of particles on the Naebu express way was highly fluctuated for a short duration. Ultrafine particles measured at the tunnel showed a bimodal size distribution with mode diameters of ~10 nm and ~50 nm. At the Han riverside section, ~10 nm particles appeared significantly compared with size distribution at the tunnel. This on-road measurement approach can be utilized to manage vehicle-related air pollution in urban area.

Estimation of Mass Size Distribution of Atmospheric Aerosols Using Real-Time Aerosol Measuring Instruments (실시간 에어로졸 측정장비를 이용한 대기 중 입자상 물질의 무게 농도 분포의 추정)

  • Ji, Jun-Ho;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.39-50
    • /
    • 2013
  • Real-time aerosol measuring instruments have been widely used for the measurement of atmospheric aerosol, diesel particulate matter, or material synthesis. A scanning mobility particle sizer (SMPS) measures the number size distribution of particles using electrical mobility detection technique. An aerodynamic particle sizer (APS) is used to determine the number concentration and the mean aerodynamic diameter of test particles. An electrical low-pressure impactor (ELPI) is a multi-stage impaction device to separate airborne particles into aerodynamic size classes using particle charging and electrical detection techniques. In this study, the performance of these instruments were evaluated to assess their ability to obtain mass concentrations from particle number concentration measurements made as a function of particle size. The effect of determination of particle density on the measurement of mass concentration was investigated for the three instruments.