• Title/Summary/Keyword: Particle mass concentration

Search Result 276, Processing Time 0.024 seconds

Comparison of Dustiness of Eleven Nanomaterials using Voltex Shaker Method (볼텍스쉐이커를 이용한 11개 나노물질의 분진날림 비교)

  • Lee, Naroo;Park, Jinwoo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.273-282
    • /
    • 2018
  • Objectives: Dustiness of nanomaterials is considered as exposure index of essential material. Research on dustiness of nanomaterial is needed to control exposure in workplaces. Method: Dustiness measurement using vortex shaker were installed in the laboratory. Nanomaterials, 1 g, was put in the glass test tube and shaked using vortex shaker. Aerosol dispersed was measured using scanning mobility particle sizer(SMPS) and optical particle counter(OPC). Mass concentration using PVC filter and cassette was measured and TEM grid sampling was conducted. Total particle concentration and size distribution were calculated. Image and chemical composition of particles in the air were observed using transmission electron microscopy and energy dispersive X-ray spectrometer. Eleven different test nanomaterials were used in the study. Results: Rank of mass concentration and particle number concentration were coincided in most cases. Rank of nanomateirals with low concentration were not coincided. Two types of fumed silica had the highest mass concentration and particle number concentration. Indium tin oxide, a mixture of indium oxide and tin oxide, had high mass concentration and particle number concentration. Indium oxide had very low mass concentration and particle number concentration. Agglomeration of nanoparticles in the air were observed in TEM analysis and size distribution. In this study, mass concentration and particle number concentration were coincided and two index can be used together. The range of dustiness in particle number concentration were too wide to measure in one method. Conclusion: Particle number concentration ranged from low concentration to high concentration depend on type of nanomaterial, and varied by preparation and amount of nanomaterial used. Further study is needed to measure dustiness of all nanomaterial as one reference method.

Estimation of Optimum PM2.5 Ionic Concentration Control Strategy for Reducing Fine Particle Mass Concentrations in Seoul (서울시 초미세먼지 질량농도 저감을 위한 입자 내 이온성분 최적감축방법 예측)

  • Kim, Jung Youn;Lee, Ji Won;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.151-164
    • /
    • 2010
  • Inorganic ions and water are major components of ambient fine particles. Water content in fine particles is mainly determined by ambient meteorological conditions and the concentrations of hygroscopic species such as inorganic ions. Thus, to reduce fine particle mass concentration, it is important to accurately estimate the relationship between water content and the concentration of ions in fine particles. Water content in fine particles in Seoul are estimated by using a gas/particle equilibrium model to understand the characteristics of fine particle mass concentration. In addition, sensitivity of fine particle mass concentration to the changes of particulate ionic species (sulfate, nitrate, and ammonium) is estimated. It was found that water content in Seoul is mostly determined by the concentrations of the hygroscopic ionic species, especially, sulfate and ammonium, and ambient relative humidity.

A Study on the Particles Density Estimation in Seoul Metropolitan (서울시 미세먼지의 밀도 추정에 관한 연구)

  • Kim, Shin-Do;Kim, Chang-Hwan;Hwang, Ui-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.2
    • /
    • pp.131-136
    • /
    • 2008
  • The variation of the particle size distribution and density as well as the chemical composition of aerosols is important to evaluate the particles. This study measured and analyzed airborne particles using a scanning mobility particle sizer (SMPS) system and an aerodynamic particle sizer (APS) at the University of Seoul during every season. The highest particle number concentration of airborne particles less than $0.9\;{\mu}m$, occurred in winter, while the highest particle number concentration of airborne particles more than $0.9\;{\mu}m$, occurred in spring. Mass concentration appeared highest at spring. Also, when we compared $\beta$-ray's mass concentration with calculated mass concentration by using the SMPS-APS system during each season, density of the winter is $1.92\;g/cm^3$, spring density is $1.64\;g/cm^3$, fall density is $1.57\;g/cm^3$. We found out that PM10 density was differ every season. However, while the calculated density is whole density for PM10 the density of each diameter was different. In this study the density estimation equation of the QCM cascade impactor measured mass concentration of each diameter.

Characteristics of Nano-Particles Exhausted from Diesel Passenger Vehicle with DPF

  • Park, Yong-Hee;Shin, Dae-Yewn
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.533-538
    • /
    • 2006
  • The nano-particles are known to influence the environmental protection and human health. The relationships between transient vehicle operation and nano-particle emissions are not well-known, especially for diesel passenger vehicles with DPF(Diesel Particulate Filter). In this study, two diesel passenger vehicles were measured on a chassis dynamometer test bench. The particulate matter (PM) emission of these vehicles was investigated by number and mass measurement. The mass of the total PM was evaluated using the standard gravimetric measurement method, and the total number concentrations were measured on a ECE15+EUDC driving cycle using Condensation Particle Counter (CPC). According to the investigation results, total number concentration was $1.14{\times}10^{11}$M and mass concentration was 0.71mg/km. About 99% of total number concentration was emitted during the $0{\sim}400s$ because of engine cold condition. In high temperature and high speed duration, the particulate matter was increased but particle concentration was emitted not yet except initial engine cold condition According to DPF performance deterioration, the particulate matter was emitted 2 times and particle concentration was emitted 32 times. Thus DPF performance deterioration affects particle concentration more than PM.

An Experimental Study on the Characteristics of Generated Particle using Homogeneous Condensation Particle Generator (응축입자 발생기에서의 입자 발생특성에 관한 실험적 연구)

  • Kim, J.H.;Kim, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.392-397
    • /
    • 2000
  • Mono-disperse particles generated by a condensation particle generator are widely used to meet the experimental and industrial needs. The characteristics of particles generated by homogeneous nucleation have been studied experimentally using a laminar flow condensation particle generator. Dry nitrogen gas saturated with oleic acid vapor was cooled well below the saturation temperature causing the highly supersaturated vapor to nucleate. The dependence of GSD(Geometric Standard Deviation), GMD(Geometric Mean Diameter), and the mass concentration of particles on the temperature at the evaporator, flow rate and the temperature condition at condenser was studied. The experimental results show that the mass concentration of particles is affected by the radial temperature profile at condenser. Nucleation at the center of the condenser causes the mass concentration of particles to increase. The experimental results also show that the suppression of additional nucleation by a constant temperature condition at the condenser increases the mean diameter of particle.

  • PDF

Estimation of Particle Mass Concentration from Lidar Measurement (라이다 관측자료를 이용한 미세먼지 농도 산정)

  • Kim, Man-Hae;Yeo, Huidong;Sugimoto, Nobuo;Lim, Han-Cheol;Lee, Chul-Kyu;Heo, Bok-Haeng;Yu, Yung-Suk;Sohn, Byung-Ju;Yoon, Soon-Chang;Kim, Sang-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.169-177
    • /
    • 2015
  • Vertical distribution of particle mass concentrations was estimated from 8-year elastic-backscatter lidar and sky radiometer data, and from ground-level PM10 concentrations measured in Seoul. Lidar ratio and mass extinction efficiency were determined from aerosol optical depth (AOD) and ground-level PM10 concentrations, which were used as constraints to estimate particle mass concentration. The mean lidar ratio (with standard deviation) and mass extinction efficiency for the entire 8-year study period were $60.44{\pm}23.17$ sr and $3.69{\pm}3.00m^2g^{-1}$, respectively. The lidar ratio did not vary significantly with the ${\AA}ngstr{\ddot{o}}m$ exponent (less than ${\pm}10%$); however, the mass extinction efficiency decreases to $1.82{\pm}1.67m^2g^{-1}$ (51% less than the mean value) when the ${\AA}ngstr{\ddot{o}}m$ exponent is less than 0.5. This result implies that the particle mass concentration from lidar measurements can be underestimated for dust events. Seasonal variation of the particle mass concentration estimated from lidar measurements for the boundary layer, was quite different from ground-level PM10 measurements. This can be attributable to an inhomogeneous vertical distribution of aerosol in the boundary layer.

Measurement of Coarse Particle Mass in Alumina Powders Using Wet Sieve Method (습식 체분리법을 이용한 알루미나분말 중의 조대입자 함량평가)

  • Jung, Sang-Jin;Lim, Hyung-Mi;Lee, Seung-In;Kim, Young-Hee;Kim, Soo-Ryong;Cho, Yong-Ick
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.775-782
    • /
    • 2002
  • The effects of solid and dispersant concentration was investigated by wet-sieving method for knowing the amount of coarse particle in fine powders. In the work alumina powders, sodium hexametaphosphate and sodium polyacrylate were used for preparing slurry. It was confirmed that the coarse particle mass increased by increasing alumina concentration and decreasing dispersant concentration. With systematic measurements we know that the alumina powder and dispersant of one weight percent(1.0wt%) were proper quantity for coarse particle mass measuring, respectively. Sodium polyacrylate as dispersant showed higher coarse particle mass than sodium hexametaphosphate. The sieve mass was decreased according to increase of experiment number. Based on experiments it was considered that wet-sieving method is good tool for measuring a coarse particle mass in fine powders.

Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone (드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정)

  • Kim, Heesang;Park, Yonghe;Kim, Wooyoung;Eun, Heeram;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.

Effects of Two-dimensional Heat and Mass Transports on Condensational Growth of Soot Particles in a Tubular Coater (원형관 코팅장치에서 연소 입자의 응축성장에 미치는 2차원 열 및 물질전달의 영향)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.163-171
    • /
    • 2013
  • Soot particles emitted from combustion processes are often coated by non-absorbing organic materials, which enhance the global warming effect of soot particles. It is of importance to study the condensation characteristics of soot particles experimentally and theoretically to reduce the uncertainty of the climate impact of soot particles. In this study, the condensational growth of soot particles in a tubular coater was modeled by a one-dimensional (1D) plug flow model and a two-dimensional (2D) laminar flow model. The effects of 2D heat and mass transports on the predicted particle growth were investigated. The temperature and coating material vapor concentration distributions in radial direction, which the 1D model could not accounted for, affected substantially the particle growth in the coater. Under the simulated conditions, the differences between the temperatures and vapor concentrations near the wall and at the tube center were large. The neglect of these variations by the 1D model resulted in a large error in modeling the mass transfer and aerosol dynamics occurring in the coater. The 1D model predicted the average temperature and vapor concentration quite accurately but overestimated the average diameter of the growing particles considerably. At the outermost grid, at which condensation begins earliest due to the lowest temperature and saturation vapor concentration, condensing vapor was exhausted rapidly because of the competition between condensations on the wall and on the particle surface, decreasing the growth rate. At the center of the tube, on the other hand, the growth rate was low due to high temperature and saturation vapor concentration. The effects of Brownian diffusion and thermophoresis were not high enough to transport the coating material vapor quickly from the tube center to the wall. The 1D model based on perfect radial mixing could not take into account this phenomenon, resulting in a much higher growth rate than what the 2D model predicted. The result of this study indicates that contrary to a previous report for a thermodenuder, 2D heat and mass transports must be taken into account to model accurately the condensational particle growth in a coater.