• Title/Summary/Keyword: Particle loading

Search Result 399, Processing Time 0.025 seconds

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing

  • Rahmani, Hamidreza;Panah, Ali Komak
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-326
    • /
    • 2020
  • The long-term behavior of rockfill material used in the construction of infrastructures such as dams is of great significance. Because of concerns about the application of weak rockfill material in dam construction, further experimental studies on the behavior of these materials are required. In this study, laboratory experiments were performed to investigate the one-dimensional deformation and particle breakage of the weak rockfill material under stress. A one-dimensional compression apparatus was designed and developed for testing of rockfill materials of different maximum particle sizes (MPSs). The compression tests were performed under dry, wet and saturated conditions on samples of rockfill material obtained from a dam construction site in Iran. The results of the experiments conducted at the specimen preparation stage and the 1D compression tests are presented. In weak rockfill, the effect of the addition of water on the behavior of the material was uncertain as there were both an increases and decreases observed in particle breakage. Increasing the MPS of the weak rockfill materials increased particle breakage, which was similar to the behavior of strong rockfill material. In all of the MPSs examined, the settlement of specimens under wet conditions was higher than that observed under dry conditions. Also, the greatest deformation occurred during the first hour of loading.

Water Absorption of Wood Flour-Polypropylene Composites: Effects of Wood Species, Filler Particle Size and Coupling Agent (목분-폴리프로필렌 복합재의 수분흡수율 : 목재수종, 충진제 입자크기 및 상용화제의 영향)

  • Kang, In-Aeh;Lee, Sun-Youn;Doh, Geum-Hyun;Chun, Sang-Jin;Yoon, Seung-Lak
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.298-305
    • /
    • 2010
  • The effects of wood species, chemical components, filler loading level, filler particle size, and coupling agent on the water absorption property of the wood flour filled polypropylene (PP) composites were investigated in this study. After 500, 1,000, 1,500, 2,000, 2,500 and 3,000 hr water immersion, Quercus (Quercus accutisima Carr.) and Maackia (Maackia amuresis Rupr. et Maxim) showed significantly lower water absorption properties compared to Larix (Larix kaempferi Lamb.). As wood flour loading increases from 10 to 50 wt%, most wood species showed increased water absorption after a given immersion period. Particle size of wood flour proved to have very significant effects on water absorption of the composites. The effect of coupling agent was positive in terms of lowering water absorption of the composites. As the treatment level of coupling agent increases, the water absorption of the composites decreases. The lowest water absorption was obtained at the lower wood flour loading (Maackia), smaller particle size and by the addition of coupling agent. Thickness swelling of the composites shows close dependency on water absorption.

Uncertainties in blast simulations evaluated with Smoothed Particle Hydrodynamics method

  • Husek, Martin;Kala, Jiri
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.771-787
    • /
    • 2020
  • The paper provides an inside look into experimental measurements, followed by numerical simulations and their related uncertainties. The goal of the paper is to present findings related to blast loading and the handling of defects that are inherent in experiments. Very often it might seem that experiments are simplified reflections of real-life conditions. In most cases this is true, but there is a good reason for that. The more complex an experiment is, the larger the amount of uncertainties that can be expected. This especially applies when the blast loading of concrete is the subject of research. When simulations fail to reproduce the results of experimental measurements, it does not necessarily mean there is something wrong with the numerical model. The problem could be missing information. Put differently, the numerical simulation may lack information that seemed irrelevant with regard to the experiment. In the presented case, a reference simulation with a proven material model unexpectedly failed to replicate the results of an experiment where concrete slabs were exposed to blast loading. This resulted in a search for possible unknowns. When all of the uncertainties were examined, the missing information turned out to be the orientation of the charge to the concrete slab. Since the experiment was burdened with error, a sensitivity study had to take place so the influence of this factor could be better understood. The findings point to the fact that even the smallest defect during experiments must somehow be taken into account when designing numerical simulations. Otherwise, the simulations are not correlated to the experiments, but merely to some expectations.

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

A Comparison of Filtering Characteristics of Various Media considering Particle Size Distribution of Road Runoff (도로면 강우유출수의 입도분포를 고려한 여재특성 비교분석)

  • Koo, Bonjin;Choi, Gyewoon;Choi, Weonsuk;Song, Changsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.299-312
    • /
    • 2013
  • This study investigated the contaminant loading and characteristics of particle size distributions(PSDs) in the rainfall runoff from two different sources, the pavement road and the ancillary parking lot, and then evaluated four different types of filter media(i.e., EPP, EPS, Zeolite, and Perlite) to treat runoff water. The results showed that runoff from the pavement road contains 5.6 and 20 times higher SS and Pb concentrations, respectively, than that from the parking lot. The particles smaller than $100{\mu}m$ occupied 89.8 % of runoff from the pavement road and 81.4 % of that from the parking lot by volume. The effect of the hydraulic loading, at 950 m/day filtering linar velocity and 40 cm head loss, was largest for Zeolite, followed by Perlite, EPS, and EPP. The return period of tested media calculated by the regression equation for head loss indicated that EPP has the longest life time. The average SS removal rate was similar for all media at between 84.9 % and 89 %, while the effect of various filter column heights was different, showing minimal for EPP and maximum for EPS. All filter media tested demonstrated over 95 % of SS treatment efficiency for the particles bigger than $100{\mu}m$, while for the ones smaller than $100{\mu}m$ the efficiency was in order of EPP(82.4%) > Perlite(76.1 %) > EPS(66.2 %) > Zeolite(65.2 %). The results in conclusion implies that EPP is most effective filter media for the highly contaminated fine particles from road runoff.

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Evaluation on erosion resistance of STS304 by flyash (Flyash에 의한 STS304 재료의 내침식성 평가)

  • 박해웅;이의열
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.6
    • /
    • pp.575-584
    • /
    • 2001
  • Erosion due to abrasive particles contained in gas streams from boilers has been emerged as a significant problem in the coal fired power plants. Particle erosion accounted for approximately 50% of boiler failures and especially flyash erosion was responsible for 20~30% of emergency boiler shutdowns. Particularly, because of the high ash loading and high velocity, most erosion occurs in the boiler tubes and economiser tube bank where the direction of the gas stream changes to $180^{\circ}$ .In this study, a high temperature particle erosion tester was used to evaluate erosion rate in a simulated environment. The erosion parameters such as erosion temperature, particle impact angle, particle velocity and various particle size were changed. Flyash is the combustion product of the pulverized coal, where size is ranging from 1 to $200\mu\textrm{m}$. Flyash composed of mainly SiO$_2$, $A1_2$$_O3$, and $Fe_2$$O_3$has dense spherical particles and irregular particles containing numerous pores and cavities. From the erosion tests at various conditions, the maximum erosion was experienced at impact angles of $30^{\circ}$ to $60^{\circ}$ In addition, erosion rate increased in proportional to velocity and temperature. And from the observation of the eroded surfaces, it was also concluded that 304 stainless steel was mainly eroded by extrusion-forging at high impact angle ($90^{\circ}$) and by microcutting mechanism at low impact angles ($30^{\circ}$ and $45^{\circ}$).

  • PDF

Effect of Particle Size and Packing Density on the Determination of Grain Protein by the Infrared Grain Quality Analyzer (적외선 곡류품질분석기(GQA)의 단백질 정량에 미치는 측정시료의 Particle Size 및 충진밀도의 영향)

  • Shin, H.K.;Ryu, I.S.
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.81-85
    • /
    • 1979
  • A Neotec infrared instrument was evaluated for determination of protein contents of wheat and barley. Correlation coefficients between protein content determined on the instrument and by the Kjeldahl method were highly significant (0.97 to 0.98). Accuracy of analyses, measured by the standard error of a single test was 0.07 to 0.16, giving a coefficient of variability of 0.6 to 1. 1%. Method of grinding samples affected particle size and type. Particle size did not directly influence protein values; however, greater accuracy and reproducibility were achieved with smaller particle sizes. Packing density inside the loading tell also influenced the analytical results.

  • PDF

Comparison of Magnesium Hydroxide Particles by Precipitation and Hydrothermal Treatment for Flame Retardant Application to Low Density Polyethylene and Ethylene-Co-Vinyl Acetate Resin (침전법과 수열처리로 제조된 수산화마그네슘 비교와 이의 저밀도 폴리에틸렌-에틸렌 비닐 아세테이트 수지 난연제 적용)

  • Hyun, Mi Kyung;Lim, Hyung Mi;Yoon, Joonho;Lee, Dong Jin;Lee, Seung-Ho;Whang, Chin Myung;Jeong, Sang Ok
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.234-240
    • /
    • 2009
  • $Mg(OH)_2$ particles were prepared by precipitation and a hydrothermal treatment to examine the effect of $MgCl_2$ concentration, alkali type and concentration, temperature, hydrothermal treatment on the formation of $Mg(OH)_2$ particles using full factorial design, as one of DOE (Design of experiment) methods. The primary particle size is similar to the secondary particle size for the samples after the hydrothermal treatment, where the average particle size of $Mg(OH)_2$ increased with increasing the concentration of $MgCl_2$ and hydrothermal temperature and decreasing alkali/Mg molar ratio. On the other hand, for the samples prepared from precipitation, the secondary particle size is larger than the primary particles due to aggregation. The difference in alkaline source is that the particles prepared from $NH_4OH$ exhibit the larger size with better dispersion than those from NaOH. Low density polyethylene and ethylene-co-vinyl acetate (LDPE-EVA) resin composed of the smaller secondary particle size of $Mg(OH)_2$ shows a higher limited oxygen index (LOI) at 50 and 55% loading, but the smaller primary particle size may result in a better grade in UL-94 tests. At the high loading of 60%, all samples with any preparation methods exhibit V-0 grade but the LOI value depends on not only primary particle size but also dispersion state.