• Title/Summary/Keyword: Particle image Velocimetry

Search Result 642, Processing Time 0.028 seconds

Development of New Holography System for Measurments of Particle Velocities Using Separation of Images (이미지 분리를 이용한 입자 속도 측정을 위한 홀로그래피 시스템의 개발)

  • Kang, B.S.;Poulikakos, D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.16-23
    • /
    • 1997
  • In this research a novel two-reference-beam double pulse holographic technique for the measurments of particle sizes and velocities was developed. This holographic method features the capability of separation of the first and second particle images by using two reference beams instead of one and the change of the polarization direction of laser light. The developed holographic system was tested through the measurements of droplet sizes and velocities in the spray created by two high speed impinging jets. The overall spray pattern clearly revealed the inherent wave nature. Smaller and faster droplets were generated with larger impingement angle, higher jet velocity. and smaller orifice diameter.

  • PDF

Effect of Co-firing PKS and Coal on Flame Structure in a Pulverized Coal Swirl Burner (미분탄 스월버너에서 PKS와 석탄 혼소가 화염 구조에 미치는 영향)

  • Shin, Minho;Sung, Yonmo;Choi, Minsung;Lee, Gwangsu;Choi, Gyungmin;Kim, Duckjool
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.4
    • /
    • pp.30-38
    • /
    • 2016
  • Flame structure of co-firing coal and palm kernel shell (PKS) was investigated in a pulverized coal swirl burner by particle image velocimetry (PIV). The pulverized coal swirl flame is operated with a PKS blending ratio of 10%, 20%, and 30%. For all operating conditions, flame structures such as internal recirculation zone (IRZ), outer recirculation zone (ORZ), and exhaust tube vortex (ETV) were observed. In the center of flame, the strong velocity gradient is occurred at the stagnation point where the volatile gas combustion actively takes place and the acceleration is increased with higher PKS blending ratio. OH radical shows the burned gas region at the stagnation point and shear layer between IRZ and ORZ. In addition, OH radical intensity increases for a co-firing condition because of high volatile matter from PKS. Because the volatile gas combustion takes place at lower temperature, co-firing condition (more than 20%) leads to oxygen deficiency and reduces the combustibility of coal particle near the burner. Therefore, increasing PKS blending ratio leads to higher OH radical intensity and lower temperature.

A Study on Natural Convection Flows Using Particle Image Analysis (입자영상해석에 의한 자연대류 유동에 관한 연구)

  • Bae, D.S.;Kim, N.S.;Cho, W.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.11-16
    • /
    • 2000
  • Simultaneous quantitative measurements are made of the velocity fields for two-dimensional natural convection in a rectangular enclosure using PIV(Particle Image Velocimetry). The experiments are performed at a Prandtl number of 6.62, an aspect ratio of 1.0, Rayleigh numbers from $1.294{\times}10^6\;to\;3.8841{\times}10^6$, and angles of inclination of $0^{\circ},\;30^{\circ}\;and\;60^{\circ}$ inside a $30mm{\times}30mm{\times}8mm$ cavity made of an acrylic glass 10mm, with two isothermal copper walls kept at a prescribed temperature. The experimental results agreed very well with the numerical results. It was found that the flow consisted of a large double convection cell at angle of inclination of $60^{\circ}$.

  • PDF

An Experimental Study on Structure of Air-assist Spray with Air Entrainment (공기유입을 고려한 2유체 분무의 구조에 관한 실험적 연구)

  • Chae, H.C.;Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • The effect of air entrainment in twin-fluid spray structure is investigated experimentally by varing the amount of itemizing air. The air entrainment is expected to affect on droplet size and velocity, droplet number density, turbulent kinetic energy and vorticity. PDA(Phase Doppler Anemometer) and PIV(Particle Image Velocimetry) system are used to measure those important factors in analyzing spray structure. The results show that spray structure consists of three distinctive regions ; the atomizing region near nozzle, characterizing strong convective effect, the central core region where droplets are accelerated, and the spray sheath region where droplets are decelerated due to air entrainment. The local air entrainment rate is largest near nozzle, characterizing strong turbulent kinetic energy and vorticity but deceases along axial distance.

  • PDF

Flow Visualization around the Endothelial Cell Model by the PIV System (입자영상유속계를 이용한 혈관내피세포 모형 주위의 유동가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.381-384
    • /
    • 2000
  • Relationships between biochemical phenomena and hemodynamics on human endothelial cells are very important to study the mechanism of atherosclerotic formation and development. The objective of this study is to investigate the flow phenomena around the endothelial cell model by the PIV experiment. The microscopic images of endothelial cells were acquired by a CCD camera to fabricate the shape of endothelial cell. The cell models were fabricated by using a photoforming process. Two consecutive particle images were captured by the CCD camera for the image processing. Conifer powder as the tracing particles was added to water to visualize the flow field. The cross-correlation method was applied fer the image processing of the flow visualization. Pressure and wall shear stress variations on the surfaces of the endothelial cells were calculated to investigate the effects of hemodynamic forces on the morphological changes.

  • PDF

An Experimental Study for the Structure of Conical Vortex at the Low-Rise Building Roof by using a PIV Technique (PIV기법을 이용한 저층 건물 지붕에서 발생되는 원추형 와의 구조에 대한 실험적 연구)

  • Ji, Ho-Seong;Jeong, Eun-Ho;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.667-672
    • /
    • 2000
  • The Characteristics of the conical vortices on the roof surface of a low-rise building has been investigated by using a PIV(Particle Image Velocimerty) technique. The scaled model of TTU building with 1:92 scaling ratio was used. The Reynolds number based on the free stream velocity and the length of the model was $1.96{\times}10^5$. When the angle of attack for the building model is $45^{\circ}$, the conical vortices are occurred symmetrically and the center of vortices are changed with respect to the angle of the approaching flow. The rotating direction of the conical vortices found to be counter-rotating. The secondary vortex motions are investigated using the instantaneous flow field data.

  • PDF

An Electrical Particle Velocity Profiler Using Particle Transit Time Across Uneven Inter-Gap Electrodes (비등간격 전극열에서의 입자 통과시간을 이용한 전기적 입자속도분포 검출기)

  • Kim, Tae-Yoon;Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.297-302
    • /
    • 2008
  • We present an electrical particle velocity profiler using particle transit time across uneven inter-gap electrodes. We measure both the particle position and velocity from the voltage signals generated by the particles passing across sensing electrodes, thus obtaining the velocity profile of the particles in a microfluidic channel. In the experimental study, we use polystyrene microparticles to characterize the performance of the electrical particle velocity profiler. The particle velocity profile is measured with the uncertainty of 5.44%, which is equivalent to the uncertainty of 5% in the previous optical method. We also experimentally demonstrate the capability of the present method for in-channel clogging detection. Compared to the previous optical methods, the present electrical particle velocity profiler offers the simpler structure, the cheaper cost, and the higher integrability to micro-biofluidic systems.

Analysis of pillar stability according to reinforcement method for very near parallel tunnel (초근접 병렬터널 필라부 보강공법에 따른 안정성 분석)

  • Jo, Young-Seok;Kim, Yun-Hee;Hong, Ji-Yeon;Kim, Dong-Gyou;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.119-131
    • /
    • 2021
  • In general, the stress is concentrated on the pillar of very near parallel tunnel (VNPT), and the pillar has been reinforced by using steel-wires to maintain the stability of the tunnel. However, since the strength of the pillar decreases in the soil layer, the reinforcing pillar with the steel-wires is insufficient for tunnel stability. In this study, the laboratory tunnel experiment was conducted to examine the reinforcement effect for a new method, of which the pillar of VNPT is strengthened by using steel-pipes. As a result, against overburden stress, the bearing capacity of the steel-pipe reinforcement was 22% greater than that of the steel-wire reinforcement. In using the Particle Image Velocimetry method, the analysis shows that the steel-pipe reinforcement forms a more favorable condition of which uniformly the overburden load acts on the VNPT and the pillar than the steel-wire reinforcement. Based on the results, the steel-pipe reinforcement is expected to bring a more positive effect on tunnel stability than the steel-wire reinforcement.

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

Experimental Investigation of the Turbulent Effect on Settling Velocity of Inertial Particles in Open-channel Flow (개수로 흐름에서 난류가 관성입자의 침강속도에 미치는 영향에 대한 실험 연구)

  • Baek, Seungjun;Park, Yong Sung;Jung, Sung Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.171-171
    • /
    • 2022
  • 난류 수체에서 관성입자의 침강속도는 정지 수체에서보다 빠르고, 그 침강속도의 증가비율은 입자의 관성력과 난류의 길이 스케일에 큰 영향을 받는다고 알려져 있다(Wang and Maxey, 1993; Yang and Shy, 2003; Wang et al., 2018). 본 연구에서는 개수로 흐름에서 난류의 영향을 받는 관성입자의 침강속도를 측정하고, 정지 상태의 침강속도에 대한 침강속도의 증가비율과 난류 인자의연관성에 대해 조사하였다. 실험에 사용된 관성입자는 비중 1.35, 직경 300 ㎛에서 2000 ㎛까지의 구형 플라스틱(PE; polyethylene) 입자이며, 해당 입자들의 침강속도는 PTV(particle tracking velocimetry) 방식을 통해 측정하였다. 그리고 PIV(particle image velocimetry) 기법을 통해, 개수로 흐름의 난류 에너지 소산율(energy dissipation rate, ϵ)과 그에 따른 Kolomogorov 길이 스케일을 측정하였다. 실험 결과, 모든 직경 조건에서 플라스틱 입자는 난류 흐름에서의 침강속도가 정지 수체에서의 침강속도보다 빠름을 보였으며, 그 비율은 입자 직경이 난류의 길이 스케일과 유사하거나 작아질 때 큰 폭으로 증가하는 것을 확인하였다. 또한 유체 내에서의 관성입자의 거동에 대한 이론식과 비교하여 관성입자의 침강에 미치는 여러 힘들의 상대적 관계를 파악하였다. 본 연구의 결과는 자연 수체에서 미세플라스틱의 거동을 이해하는데 도움이 될 것으로 기대된다.

  • PDF