• Title/Summary/Keyword: Particle distribution

Search Result 2,780, Processing Time 0.034 seconds

Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone (드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정)

  • Kim, Heesang;Park, Yonghe;Kim, Wooyoung;Eun, Heeram;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

Experimental Analysis on Particle Growth m TEOS/O2 Plasma Reactor (TEOS/O2 플라즈마 반응기에서 미립자 성장에 대한 실험적 분석)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.149-153
    • /
    • 2001
  • A study on the particle growth in $TEOS/O_2$ plasma was performed, and particle size and its distribution was measured by the electrical aerosol analyzer (EAA), light scattering particle size analyzer and the particle size was also determined by SEM. The effects of process variables such as total gas flow rate, reactor pressure, supplied power and initial reactant concentration on the particle growth were investigated. From the EAA results, the particle size distribution is divided into three groups of the cluster size and the small and large size particles. The particle size distribution measured by the light scattering particle size analyzer becomes bimodal, because the cluster size particles smaller than 20 nm in diameter cannot be detected by the light scattering particle size analyzer. The size of particles measured by the light scattering particle size analyzer is in good agreements with those by the SEM. Also we could understand that the particle formation is very sensitive to the changes of reactor pressure and reactant concentration. As the total gas flow rate increases, the particle size decreases because of the shorter residence time. As the reactor pressure, or the reactant concentration increases, the particle concentration increases and the particles grow more quickly by the faster coagulation between particles.

  • PDF

Development of Tethered-Balloon Package System for Vertical Distribution Measurement of Atmospheric Aerosols (Tethered-Balloon Package System 개발 및 대기 에어로졸의 연직 분포 측정)

  • Eun, Hee Ram;Lee, Hong Ku;Lee, Yang Woo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.253-260
    • /
    • 2013
  • For a vertical atmospheric aerosol distribution measurement, a very compact and light particle sampling package is developed. This package includes a compact optical particle counter (Hy-OPC), a light and small condensation particle counter (Hy-CPC), sensors (GPS, wind velocity, temperature, humidity), and a communication and system control board. This package is attached to He balloon and the altitude is controlled by a winch. Using this system the vertical particle size distribution was measured. The test results showed that the ground base atmospheric particle measurement result may be a lot different from that high above the ground.

Study on Phosphate Investment for High Temperature Precision Castings(I);The Effect of Particle size and Distribution of Silica Sand on the characteristics of the Investment (고온정밀주조용 인산염계 매몰재에 관한 연구(I);매몰재의 특성에 미치는 규사의 입도와 입도분포의 영향)

  • Ahn, Ji-Hong;Lee, Jong-Nam
    • Journal of Korea Foundry Society
    • /
    • v.5 no.2
    • /
    • pp.85-96
    • /
    • 1985
  • In order to investigate the effect of particle size and distribution of silica sand on the characteristics of investment, W/P ratio, setting time, temperature change during setting, setting expansion, thermal expansion and compressive strength of the investments were measured. In this experiment, magnesia clinker and mono ammonium phosphate were used as binder, and particle size and distribution of silica sand were classified for convinence into 10 categories. The main results obtained from this investigation were summerized as follows. 1. W/P ratio decreased with increase of particle size and evenness in distribution of sand grain. 2. Setting time decreased with increase of evenness in distribution of sand grain, and temperature during setting increased with evenness in distribution of sand grain. 3. Setting expansion decreased with increase of particle size, while it increased with evenness in distribution of sand grain. 4. Thermal expansion decreased with increase of particle size. 5. Compressive strength increased with increase of particle size and evenness in distribution of sand grain. From above results, G.F.N. 250 sand which contains 30% of 50-100 mesh could be recommended for investment casting.

  • PDF

Deposition of Polydisperse Particles in a Falkner-Skan Wedge Flow (포크너-스캔 경계층유동에서의 다분산 입자부착에 대한 연구)

  • 조장호;황정호;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2342-2352
    • /
    • 1995
  • Deposition of flame-synthesized silica particles onto a target is utilized in optical fiber preform fabrication processes. The particles are convected and deposited onto the target. Falkner-Skan wedge flow was chosen as the particle laden flow. Typically the particles are polydisperse in size and follow a lognormal size distribution. Brownian diffusion, thermophoresis, and coagulation of the particles were considered and effects of these phenomena on particle deposition were studied. A moment model was developed in order to predict the particle number density and the particle size distribution simultaneously. Particle deposition with various wedge configurations was examined for conditions selected for a typical VAD process. When coagulation was considered, mean particle size and its standard deviation increased and particle number density decreased, compared to the case without coagulation. These results proved the fact that coagulation effect expands particle size distribution. The results were discussed with characteristics of thermal and diffusion boundary layers. As the boundary layers grow in thickness, overall temperature and concentration gradients decrease, resulting in decrease of deposition rate and increase of particle residence time in the flow and thus coagulation effect.

Mapping Particle Size Distributions into Predictions of Properties for Powder Metal Compacts

  • German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.704-705
    • /
    • 2006
  • Discrete element analysis is used to map various log-normal particle size distributions into measures of the in-sphere pore size distribution. Combinations evaluated range from monosized spheres to include bimodal mixtures and various log-normal distributions. The latter proves most useful in providing a mapping of one distribution into the other (knowing the particle size distribution we want to predict the pore size distribution). Such metrics show predictions where the presence of large pores is anticipated that need to be avoided to ensure high sintered properties.

  • PDF

Properties of the Poisson-power Function Distribution

  • Kim, Joo-Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.166-175
    • /
    • 1995
  • When a neutral particle beam(NPB) aimed at the object and receive a small number of neutron signals at the detector without any errors, it obeys Poisson law. Under the two assumptions that neutral particle scattering distribution and aiming errors have a circular Gaussian distributions that neutral particle scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of neutral particles vecomes a Poisson-power function distribution. We study and prove some properties, such as limiting distribution, unimodality, stochastical ordering, computational recursion fornula, of this distribution. We also prove monotone likelihood ratio(MLR) property of this distribution. Its MLR property can be used to find a criteria for the hypothesis testing problem.

  • PDF

A Study on the Characteristics of Water Quality According to Particle Size Distribution of Sediments (하상퇴적물의 입도분포에 따른 수질특성에 관한 연구)

  • Park, Sung-Jin;Kim, Hwan-Gi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.97-105
    • /
    • 2009
  • Analysis was done on the particle size distribution of sediments flown into Saemangeum from the Mankyung and Dongjin River. The organic pollutants and heavy metal existing in the sediments were analyzed, which was further used to study the properties of pollution in the sediments according to the particle size distribution. Conclusions shown below were made from these analyses. The particle size distribution showed a big difference between the upriver areas of Mankyung and Dongjin River. Particles under $75{\mu}m$ showed to be around 85% at Dongjin River, while it showed to be around 70% at Mankyung River. This kind of distribution in particle size concluded in greatly affecting the contamination density of the sediments. From the analysis done on the soil type of sediments, deposition in Mankyung River categorized into Silty loam and Sandy loam, where Silty loam covered most of area and deposition in Dongjin River categorized into Sand, Loamy sand, Silty loam, Sandy loam. Considering the weight ratio, the density of contamination of the sediments by particle size at Dongjin and Mankyung River has been analyzed to show that organic pollutants and heavy metals occupy more than 70% of the whole contamination in the range under the particle size of $75{\mu}m$.

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

Development and Performance Evaluation of Radial Exhaust Multi-port System for Real-time Particle Size Distribution Measurement (실시간 입자분포 측정을 위한 Radial Exhaust Multi-port System의 개발 및 성능평가)

  • Lee, Hong Ku;Lee, Yang-Woo;Jeon, Ki Soo;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.133-137
    • /
    • 2013
  • Measuring particle size distribution is one of the primary concerns in aerosol studies. For a nano-particle size distribution measurement, many scientists use a combination of a differential mobility analyzer (DMA) and a condensation particle counter (CPC) system, which is a called scanning mobility particle sizer (SMPS). Although it has a very high particle size resolution, some issues still remain. These problems include residence time between a DMA and a CPC, discontinuity of a CPC, and disturbance due to long scanning time during the precise measurement of particles. In particular, long scanning time is not adequate for measuring particle size distribution since the particle concentration is changing during the measurement. In this study, we developed radial exhaust multi-port system (REM-system) with no scanning time and high resolution to measure real-time particle size distribution. As a result of the REM-system performed using mono-disperse particle, it is expected that this system will be suitable for measuring continuously changing aerosol. If the counting efficiency of multi-condensation particle counter (M-CPC) and data inversion matrix are completed, REM-system will be a very adequate system for unsteady aerosol, which changes for SMPS scanning time.