• Title/Summary/Keyword: Particle dispersion

Search Result 662, Processing Time 0.029 seconds

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites (초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성)

  • Park, Hee-Sub;Ryoo, Min-Ho;Hong, Soon-Hyung
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Preparation of Au fine particle dispersedf $TiO_{2}$ film by sol-gel and photoreduction process (Sol-Gel and photoreduction 공정에 의한 Au 미립자분산 $TiO_{2}$ 박막 제조)

  • 현부성;김병일;강원호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • Au fine particles dispersed $TiO_{2}$ film was prepared on silica glass substrate by sol-gel dipping and firing process. The $TiO_{2}$ films were fabricated from the system of titanium tetraisopropoxide-EtOH-HCl-$H_{2}O$-hydrogen tetrachloroaurat (III) tetrahydrate. The conditions for the formation of clear solution and dissolving high concentration of Au compound were examined. Photoreduction process was adopted to control the size of gold metal particles. Phase evolution of matrix $TiO_{2}$ and variation of Au particle with UV irradiation were investigated by XRD, SEM, TEM and UV-visible spectrophotometer. The effect of CPCl (Cetylpyridinium chloride monohydrate) as a dispersion agent was evaluated.

  • PDF

Hydrothermal Synthesis of 6mol% Yttria Stabilized Cubic ZrO2 Nano Powders (이트리아 안정화 지르코니아 나노 분말 합성)

  • Lee, Jae-Hoon;Bae, Sung-Hwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.445-450
    • /
    • 2017
  • YSZ (Yttria-stabilized zirconia) is a ceramic material that is used for electronic and structural materials due to its excellent mechanical properties and specific electrical characteristics according to the Yttrium addition. Hydrothermal synthesis has several advantages such as fine particle size, uniform crystalline phase, fast reaction time, low process temperature and good dispersion condition. In order to synthesize YSZ nanoparticles with high crystallinity, hydrothermal synthesis was performed at various concentrations of NaOH. The hydrothermal process was held at a low temperature ($100^{\circ}C$), with a short process time (2,4,8 hours); the acidity or alkalinity of solution was controlled in a range of pH 2~12 by addition of NaOH. The optimum condition was found to be pH 12, at which high solubility levels of Y(OH) and Zr(OH) were reported. The synthesized nano powder showed high crystallinity and homogenous composition, and uniform particle size of about 10 nm.

Preparation of Eudragit coated solid lipid nanoparticles (SLN) for hydrophilic drug delivery

  • Han, Sung-Chul;Yoon, Hee-Sun;Lee, Ki-Young;Kim, Yeon-Zu;Kim, Dong-Woon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.655-659
    • /
    • 2003
  • Solid lipid nanoparticle (SLN) system has been attracted increasing attention during last few years as a potential drug delivery carrier However, the SLN have disadvantage of low encapsulation efficiency for hydrophilic drug. In this study, for increase it's encapsulation efficiency, we prepared the $Eudragit^{\circledR}$ L100-55 (eudragit) coated SLN(E-SLN) based on solvent evaporation method and melt dispersion technique, and analyzed their physicochemical properties in terms of particle size, morphology, and encapsulation efficiency. As a result, they have a ${\pm}150$ nm particle size, spherical shape, and $10^{\sim}25$ % loading efficiency. SLN consists of coconut oil as core material, ascorbic acid and okyong-san as hydrophilic drug.

  • PDF

Effects of Temperature on Flocculation Kinetics Using Fe(III) Coagulant in Water Treatment (정수처리시 Fe(III) 응집제를 사용한 응집동력학에 대한 온도의 영향)

  • 강임석
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.181-194
    • /
    • 1995
  • Flocculation kinetics using ferric nitrate as a coagulant to coagulate kaolin clay in water was examined as a tool to investigate the effect of low temperature under tightly controlled treatment conditions. Both the particle size distribution data obtained from Automatic Image Analysis (AIA) system and the on-line measurement of the degree of turbidity fluctuation in a flowing suspension by Photometric Dispersion Analyzer (PDA) were used to measure flocculation kinetics. Results show that cold water temperature had a pronounced detrimental effect on flocculation kinetics. For improving flocculation kinetics at low water temperature, maintaining constant pOH to adjust water chemistry for temperature changes was found to be partially effective only in the more acidic pH range studied.

  • PDF

Synthesis and Characterization of Thermosensitive Nanoparticles Based on PNIPAAm Core and Chitosan Shell Structure

  • Jung, Hyun;Jang, Mi-Kyeong;Nah, Jae-Woon;Kim, Yang-Bae
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.265-270
    • /
    • 2009
  • Noble thermosensitive nanoparticles, based on a PNIPAAm-co-AA core and a chitosan shell structure, were designed and synthesized for the controlled release of the loaded drug. PNIPAAm nanoparticles containing a carboxylic group on their surface were synthesized using emulsion polymerization. The carboxylic groups were conjugated with the amino group of a low molecular weight, water soluble chitosan. The particle size of the synthesized nanoparticles was decreased from 380 to 25 nm as the temperature of the dispersed medium was increased. Chitosan-conjugated nanoparticles with $2{\sim}5$ wt% MBA, a crosslinking monomer, induced a stable aqueous dispersion at a concentration of 1mg/1mL. The chitosan-conjugated nanoparticles showed thermo sensitive behaviors such as LCST and size shrinkage that were affected by the PNIPAAm core and induced some particle aggregation around LCST, which was not shown in the NIPAAm-co-AA nanoparticles. These chitosan-conjugated nanoparticles are also expected to be more biocompatible than the PNIPAAm core itself through the chitosan shell structures.

Preparation of Waterborne Polyurethane Dispersion Based on Siloxane Polyal (실록산 폴리올의 도입에 따른 수분산성 폴리우레탄의 제조)

  • Yoo, Su-Yong;Kim, Jung-Du;Kam, Sang-Kyu;Moon, Myung-Jun;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.891-896
    • /
    • 2007
  • Waterborne polyurethane dispersions (WPUD) were prepared by poly(ethylene glycol) adipate as the polyester type, ${\alpha},{\omega}-hydroxyalkyl$ terminated polydimethylsiloxane (PDMS-diol) as the polysiloxane type, hexamethylene diisocyanate, and isophorone diisocyanate, dimethylol propionic acid. The effects of PDMS-diol contents on the particle size, thermal and surface properties of WPUD were investigated. The structures of the synthesized WPUD were confirmed using by FT-IR. The surface, thermal and mechanical properties were investigated by measuring the contact angles, DSC, TGA and UTM. As PDMS-diol contents increased, the particle size, the contact angle, and the elongation was increased, while the tensile strength was decreased. Also the thermal stabilities of the synthesised WPUD were increased as PDMS-diol contents increased.

A Case Study of Ionic Components in the Size-resolved Ambient Particles Collected Near the Volcanic Crater of Sakurajima, Japan

  • Ma, Chang-Jin;Kim, Ki-Hyun;Kang, Gong-Unn
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2010
  • In this study, the ionic composition of volcanogenically derived particles and their temporal and spatial distributions have been investigated to evaluate the impact of the volcanic eruption on the local ecosystem and residents. To this end, an intensive field study was conducted to measure the size-segregated particulate matters at the east part of Sakurajima in Japan. Fractionated sampling of particles into > $PM_{10}$, $PM_{10-2.5}$, and $PM_{2.5}$ was made by a multi nozzle cascade impactor (MCI). The concentration of various ions present in the size-resolved particles was determined by Ion chromatography. The time dependent 3-dimensional Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model developed by the NOAA Air Resources Laboratory (ARL) indicated that the sampling site of this work was affected by the volcanic aerosol particles plume. The temporal distributions of sulfate and $PM_{2.5}$ during the field campaign were significantly variable with important contributions to particle mass concentration. The chlorine loss, suspected to be caused by acidic components of volcanic gases, occurred predominantly in fine particles smaller than $10\;{\mu}m$.

Evaluation of Thermal Behavior of Oil-based $Al_2O_3$ Nanofluids (오일 기지 알루미나 나노유체의 열적거동 평가)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.176-177
    • /
    • 2006
  • Two kinds of alumina nanofluids are prepared by dispersing $Al_2O_3$ nanoparticles m transformer oil. The thermal conductivity of the nanoparticle-oil mixtures increases with particle volume fraction and thermal conductivity of the solid particle itself. The $Al_2O_3$ nanoparticles at a volume of 0.5% can increase the thermal conductivity of the transformer oil by 5.7%, and the overall heat transfer coefficient by 20%. From the natural convection test using a prototype transformer, the cooling effect of $Al_2O_3$-oil nanofluids on the heating element and oil itself is confirmed. However, excessive quantities of the surfactant have a harmful effect on viscosity, and thus it is strongly recommended to control the addition of the surfactant with great care.

  • PDF

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.