• Title/Summary/Keyword: Particle collision

Search Result 148, Processing Time 0.024 seconds

Control of Plasma Characteristic to Suppress Production of HSRS in SiH4/H2 Discharge for Growth of a-Si: H Using Global and PIC-MCC Simulation

  • Won, Im-Hui;Gwon, Hyeong-Cheol;Hong, Yong-Jun;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.312-312
    • /
    • 2011
  • In SiH4/H2 discharge for growth process of hydrogenated amorphous silicon (a-Si:H), silane polymers, produced by SiH2 + Sin-1H2n ${\rightarrow}$ SinH2n+2, have no reactivity on the film-growing surface. However, under the SiH2 rich condition, high silane reactive species (HSRS) can be produced by electron collision to silane polymers. HSRS, having relatively strong reactivity on the surface, can react with dangling bond and form Si-H2 networks which have a close correlation with photo-induced degradation of a-Si:H thin film solar cell [1]. To find contributions of suggested several external plasma conditions (pressure, frequency and ratio of mixture gas) [2,3] to suppressing productions of HSRS, some plasma characteristics are studied by numerical methods. For this study, a zero-dimensional global model for SiH4/H2 discharge and a one-dimensional particle-in-cell Monte-Carlo-collision model (PIC-MCC) for pure SiH4 discharge have been developed. Densities of important reactive species of SiH4/H2 discharge are observed by means of the global model, dealing 30 species and 136 reactions, and electron energy probability functions (EEPFs) of pure SiH4 discharge are obtained from the PIC-MCC model, containing 5 charged species and 15 reactions. Using global model, SiH2/SiH3 values were calculated when pressure and driving frequency vary from 0.1 Torr to 10 Torr, from 13.56 MHz to 60 MHz respectively and when the portion of hydrogen changes. Due to the limitation of global model, frequency effects can be explained by PIC-MCC model. Through PIC-MCC model for pure SiH4, EEPFs are obtained in the specific range responsible for forming SiH2 and SiH3: from 8.75 eV to 9.47 eV [4]. Through densities of reactive species and EEPFs, polymerization reactions and production of HSRS are discussed.

  • PDF

An Analysis of Science Textbooks and Internet Sites Related to Diffusion and Dissolution on the View Point of Particle Theory, and Development of Computer-Assisted Instruction Program (입자론의 관점에서 본 확산과 용해 개념에 관련된 과학 교과서 및 인터넷 자료 분석과 컴퓨터 수업 보조자료의 개발)

  • Kim, Ju Hyun;Lee, Dong Jun;Kim, Sun Kyoung;Kang, Seong Joo;Paik, Seong Hey
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.611-624
    • /
    • 2000
  • In this study we analysed 3-12 grade science textbooks, many literatures and internet sites related to diffusion and dissolution concepts. From these data, we discovered that the explanations of diffusion that used in textbooks are not considered the site of collision with mediums, and confused with dissolution, state transition and effusion. In the case of dissolution, almost analysis data were short of the explanations of interaction effect. Most of all, the focus of dissolution explanations was to solve the calculation problems rather than to understand the concept. Every internet site was poor, just as the level of showing textbook contents with computer, so the only effect of using computer was the sense of sight and hearing. Chemistry must be understood nature phenomena with a view point of particle theory, but many textbooks and Internet sites didn't represent it sufficiently. We set up the correct scientific concept and linked micro world of particle theory with macro world of nature phenomena. With a use of computer which have the advantage of representing moving things, we developed the computer-assisted instruction programs related to diffusion and dissolution with the viewpoint of particle movement.

  • PDF

Numerical simulation for ultrafine SiC powder synthesis using the vapor phase reaction (기상반응을 이용한 SiC 초미분말 합성에 관한 수치모사)

  • 유용호;어경훈;송은석;이성철;소명기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.563-569
    • /
    • 1999
  • The numerical simulation method was utilized to investigate the optimal condition for synthesizing ultrafine SiC powders by using $TMS[Si(CH_3)_4]-H_2$ gaseous mixtures in the horizontal reactor. As a result of the theoretical analysis, the conversion percentage of TMS source was increased with increasing reaction temperature, however, which was decreased with increasing H$_2$flow rate. Though the SiC particles concentration synthesized was decreased with increasing the reaction temperature due to the higher collision rate in the gas phase, they were increased with increasing the H$_2$flow rate and TMS concentration. The SiC particle size showed a tendency to become larger as the reaction temperature and the initial TMS concentration were increased and smaller as the H$_2$ flow rate was increased. The variation of experimental particle size with the reaction temperature, H$_2$flow rate and TMS concentration was agreed with the theoretical results.

  • PDF

Calibration of HEPD on KOMPSAT-1 Using the KCCH Cyclotron

  • Shin, Young-Hoon;Rhee, Jin-Geun;Min, Kyoung-Wook;Lee, Chun-Sik;Lee, Ju-Hahn;Kwon, Young-Kwan;Kim, Jong-Chan;Ha, Jang-Ho;Park, Se-Hwan;Lee, Chang-Hack;Park, H.S.;Kim, Yong-Kyun;Chai, Jong-Seo;Kim, Yu-Seog;Lee, Hye-Young
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.208-213
    • /
    • 1999
  • Space Physics Sensor (SPS) on-board the KOMPSAT-1 consists of the High Energy Particle Detector (HEPD) and the Ionospheric Measurement Sensor (IMS). The HEPD is to characterize the low altitude high energy particle environment and the effects on the microelectronics due to these high energy Particles. It is composed of four sensors: Proton and Electron Spectrometer(PES), Linear Energy Transfer Spectrometer (LET), Total Dose Monitor (TDM), and Single Event Monitor(SEM). 35MeV proton beam from the medical KCCH cyclotron, at Korea Cancer Center Hospital in Seoul, is used to calibrate the PES. Primary proton beam of 35MeV scattered by polypropylene target is converted to various energy Protons according to the elastic collision kinematics. In this calibration, the threshold level of the proton in the PES can be determined and the energy ranges of PES channels are also calibrated.

  • PDF

Evolution of suspended sediment patterns in the East China and Yellow Seas

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Gallegosi, Sonia
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • The evolution of intricate and striking patterns of suspended sediments (SS), which are created by certain physical dynamics in the East China and Yellow Seas, has been investigated using satellite ocean color imageries and vertical profiles of particle attenuation and backscattering coefficients. The structure of these patterns can reveal a great deal about the process underlying their formation. Sea surface temperature (SST) analyzed from the Advanced Very High Resolution Radiometer (AVHRR) thermal infrared data were used to elucidate the physical factors responsible for the evolution of suspended sediment patterns in the East China Sea. The concomitant patterns of suspended sediments were tracked from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data. The detailed examination about these patterns gave birth to the definition of the evolution of suspended sediments (SS) into four stages: (1) Youth or Infant stage, (2) Younger stage, (3) Mature stage, and (4) Old stage. We describe about the three directional forces of the tidal currents, ocean warm currents and estuarine circulations that lead to occurrence of various stages of the evolution of suspended sediments that increase turbidity at high levels through out the water column of the inner and outer shelf areas during September to April. The occurrence of these four stages could be repeatedly observed. In contrast, vertical profiles of the particle attenuation ($c_{p}$) and backscattering ($b_{bp}$) coefficients displayed obvious patterns of the propagation of suspended sediment plume from the southwestern coastal sea that leads to eventual collision with the massive sediment plume originating from the Yangtze banks of the East China Sea.

Coating behavior of zirconia film fabricated by granule spray in vacuum (상온진공 과립분사에 의한 지르코니아 필름의 코팅거동)

  • Tungalaltamir, Ochirkhuyag;Kang, Young-Lim;Park, Woon-Ik;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • The Granule Spray in Vacuum (GSV) process is a method of forming a dense nanostructured ceramic coating film by spraying ceramic granules on a substrate at room temperature in a vacuum. In the Granule Spray, the granules made by agglomerating particles with the size from submicrometer to micrometer can be sprayed into the substrate. Once the granules were squashed upon collision with the substrate, they become several dozens of nanometer-sized crystals in vacuum process. The zirconia of the monoclinic phase transform into tetragonal phase at 1150℃. At this time, its volume is changed by about 6.5 %. For this reason, it is widely held that it is difficult to acquire a compact of monoclinic zirconia sinter. In this study, the effect of particle treatment temperature and standoff distance on the substrate of zirconia granules were investigated in GSV. Also, particle treatment temperature, standoff distance, coating efficiency, and microstructure of the film were considered in forming the monoclinic zirconia coating film in GSV without any heating process. The deposited films exhibited monoclinic zirconia phase without any other detectable phase by X-ray diffractometer (XRD).

Effect of Zeta Potential of Clay and Algae Particles on Flotation Efficiency (점토와 조류입자의 제타전위가 부상분리 효율에 미치는 영향)

  • Choi, Do-Young;Kim, Seong-Jin;Jung, Heung-Jo;Lee, Se-Ill;Paik, Do-Hyeon;Lee, Jae-Wook;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.437-445
    • /
    • 2005
  • Zeta potential is a key parameter of double layer repulsion for individual particles and can usually be used to interpret the trend of coagulation efficiency. This study focused on the measurement of zeta potential of algae and clay under various experimental conditions including water characteristics (pure water, stream water, reservoir water) and coagulant dose (10~50 mg/L). Results showed that the variation of zeta potential was highly sensitive depending on the water characteristics and coagulation conditions. Zeta potential of two genera of algae (anabaena sp. and microcystis sp.) were changed highly with coagulant dosage, especially. On the basis of trajectory analysis, bubble-floc collision efficiency simulated in terms of zeta potential was fitted well with removal efficiency of chlorophyll-a from algae particles. It was found that the control of zeta potential was important for effective removal of algae particles.

DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW (Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발)

  • Lee, T.G.;Shin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

Elasto-Plastic Dynamic Analysis of Solids by Using SPH without Tensile Instability (인장 불안정이 제거된 SPH을 이용한 고체의 동적 탄소성해석)

  • Lee, Kyoung Soo;Shin, Sang Shup;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.71-77
    • /
    • 2011
  • In this paper elasto-plastic dynamic behavior of solid is analyzed by using smoothed particle hydrodynamics (SPH) without tensile instability which caused by a clustering of SPH particles. In solid body computations, the instability may corrupt physical behavior by numerical fragmentation which, in some cases of elastic or brittle solids, is so severe that the dynamics of the system is completely wrong. The instability removed by using an artificial stress which introduces negligible errors in long-wavelength modes. Applications to several test problems show that the artificial stress works effectively. These problems include the collision of rubber cylinders, fracture and crack of plate.

Theoretical Studies of the Electrical Discharge Characteristics of Sulfur Hexafluoride

  • Radmilovic-Radjenovic, Marija;Radjenovic, Branislav
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.288-294
    • /
    • 2017
  • This paper contains results of the theoretical studies of the electrical breakdown properties in sulfur hexafluoride. Since the strong interaction of high-energy electrons with the polyatomic sulfur hexafluoride molecule causes their rapid deceleration to the lower energy of electron capture and dissociative attachment, the breakdown is only possible at relatively high field strengths. From the breakdown voltage curves, the effective yields that characterize secondary electron productions have been estimated. Values of the effective yields are found to be more consistent if they are derived from the experimentally determined values of the ionization coefficient and the breakdown voltages. In addition, simulations were performed using an one-dimensional Particle-in-cell/Monte Carlo collision code. The obtained simulation results agree well with the available experimental data with an error margin of less than 10% over a wide range of pressures and the gap sizes. The differences between measurements and calculations can be attributed to the differences between simulation and experimental conditions. Simulation results are also compared with the theoretical predictions obtained by using expression that describes linear dependence of the breakdown voltage in sulfur hexafluoride on the pressure and the gap size product.